OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 6 — Jun. 1, 2013
  • pp: 950–957

Digital holographic microscopy of the myelin figure structural dynamics and the effect of thermal gradient

Narges Fathi, Ali-Reza Moradi, Mehdi Habibi, Daryoosh Vashaee, and Lobat Tayebi  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 6, pp. 950-957 (2013)
http://dx.doi.org/10.1364/BOE.4.000950


View Full Text Article

Enhanced HTML    Acrobat PDF (2791 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Myelin figures (MFs) are cylindrical multilamellar lipid tubes that can be found in various healthy and diseased living cells. Their formation and dynamics involve some of the most mysterious configurations that lipid molecules can adopt under certain conditions. They have been studied with different microscopy methods. Due to the frequent coiling of their structure, the usual methods of microscopy fail to give precise quantitative information about their dynamics. In this paper, we introduced Digital Holographic Microscopy (DHM) as a useful method to calculate the precise dynamical volume, thickness, surface and length of the myelin figures. As an example of DHM imaging of myelin figures, their structure and growth rate in the presence and absence of temperature gradient have been studied in this work. We showed that the thickness of a myelin figure can be changed during the first few seconds. However, after approximately ten seconds, the thickness stabilizes and does not alter significantly. We further studied the effect of the thermal gradient on the length growth. The calculation of the length growth from the measurement of the myelin figure volume shows that the length (L) grows in time (t) as L t at the early stage of the myelin protrusion in both the presence and the absence of the thermal gradient. However, thermal gradient facilitates the growth and increases its rate.

© 2013 OSA

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.6900) Microscopy : Three-dimensional microscopy
(160.1435) Materials : Biomaterials
(090.1995) Holography : Digital holography

ToC Category:
Microscopy

History
Original Manuscript: February 26, 2013
Revised Manuscript: April 11, 2013
Manuscript Accepted: April 19, 2013
Published: May 24, 2013

Citation
Narges Fathi, Ali-Reza Moradi, Mehdi Habibi, Daryoosh Vashaee, and Lobat Tayebi, "Digital holographic microscopy of the myelin figure structural dynamics and the effect of thermal gradient," Biomed. Opt. Express 4, 950-957 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-6-950


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. B. Murphy, and M. W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Blackwell, 2012).
  2. D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948). [CrossRef]
  3. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2004).
  4. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am.72(1), 156–160 (1982). [CrossRef]
  5. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express13(18), 6738–6749 (2005). [CrossRef]
  6. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express13(12), 4492–4506 (2005). [CrossRef]
  7. X. Yu, M. Cross, C. Liu, D. C. Clark, D. T. Haynie, and M. K. Kim, “Measurement of the traction force of biological cells by digital holography,” Biomed. Opt. Express3(1), 153–159 (2012). [CrossRef]
  8. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1(1), 018005 (2010). [CrossRef]
  9. V. Micó, C. Ferreira, Z. Zalevsky, and J. García, “Basic principles and applications of digital holographic microscopy,” in Microscopy: Science Technology, Applications and Education, A. Méndez-Vilas and J. Díaz, eds. (Formatex Research Center, 2010), pp. 1411–1418.
  10. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt.38(34), 6994–7001 (1999). [CrossRef]
  11. A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena,” J. Disp. Technol.6(10), 500–505 (2010). [CrossRef]
  12. K. Farsad and P. De Camilli, “Mechanisms of membrane deformation,” Curr. Opin. Cell Biol.15(4), 372–381 (2003). [CrossRef]
  13. H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol.12(1), 11–18 (2010). [CrossRef]
  14. W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature450(7170), 670–675 (2007). [CrossRef]
  15. J. C. Stachowiak, C. C. Hayden, and D. Y. Sasaki, “Steric confinement of proteins on lipid membranes can drive curvature and tubulation,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7781–7786 (2010). [CrossRef]
  16. D. G. Dervichian, “Swelling and molecular organisation in colloidal electrolytes,” Trans. Faraday Soc.42, B180–B187 (1946). [CrossRef]
  17. A. Policard, A. Collet, and S. Pregermain, “Etude au microscope electronique des premiers stades de la lipophanerose dans les cellules histiocytaires,” C. R. Hebd. Seances Acad. Sci.246, 3405–3407 (1958).
  18. W. Stoeckenius, “Oso4-fixierung intrazellularer myelinfiguren,” Exp. Cell Res.13(2), 410–414 (1957). [CrossRef]
  19. I. K. Buckley, “Cellular injury in vitro - phase contrast studies on injured cytoplasm,” J. Cell Biol.14(3), 401–420 (1962). [CrossRef]
  20. I. K. Buckley, “Microscopic morphology of injured living tissue,” Int. Rev. Exp. Pathol.2, 241–310 (1963).
  21. M. Besisi, Living Blood Cells and Their Ultrastructure (Springer-Verlag, 1973).
  22. N. Basic-Jukic, M. Coric, P. Kes, L. J. Bubic-Filipi, J. Pasini, and I. Mokos, “Anderson-Fabry disease in kidneys from deceased donor,” Am. J. Transplant.7(12), 2829–2833 (2007). [CrossRef]
  23. R. J. Sanderson and A. E. Vatter, “Mode of formation of tubular myelin from lamellar bodies in lung,” J. Cell Biol.74(3), 1027–1031 (1977). [CrossRef]
  24. L. M. G. Vangolde, J. J. Batenburg, and B. Robertson, “The pulmonary surfactant system - biochemical aspects and functional-significance,” Physiol. Rev.68, 374–455 (1988).
  25. E. R. Weibel, G. S. Kistler, and G. Tondury, “A stereologic electron microscope study of ‘tubular myelin figures’ in alveolar fluids of rat lungs,” Z. Zellforsch. Mikrosk. Anat.69(1), 418–427 (1966). [CrossRef]
  26. L. N. Zou and S. R. Nagel, “Stability and growth of single myelin figures,” Phys. Rev. Lett.96(13), 138301 (2006). [CrossRef]
  27. D. M. Davis and S. Sowinski, “Membrane nanotubes: dynamic long-distance connections between animal cells,” Nat. Rev. Mol. Cell Biol.9(6), 431–436 (2008). [CrossRef]
  28. I. Titushkin and M. Cho, “Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers,” Biophys. J.90(7), 2582–2591 (2006). [CrossRef]
  29. W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, and E. Evans, “Effect of chain length and unsaturation on elasticity of lipid bilayers,” Biophys. J.79(1), 328–339 (2000). [CrossRef]
  30. E. Evans and W. Rawicz, “Entropy-driven tension and bending elasticity in condensed-fluid membranes,” Phys. Rev. Lett.64(17), 2094–2097 (1990). [CrossRef]
  31. T. J. McIntosh, S. Advani, R. E. Burton, D. V. Zhelev, D. Needham, and S. A. Simon, “Experimental tests for protrusion and undulation pressures in phospholipid-bilayers,” Biochemistry34(27), 8520–8532 (1995). [CrossRef]
  32. L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy2012, 685617 (2012). [CrossRef]
  33. I. Tsafrir, M.-A. Guedeau-Boudeville, D. Kandel, and J. Stavans, “Coiling instability of multilamellar membrane tubes with anchored polymers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.63(3), 031603 (2001). [CrossRef]
  34. I. Sakurai, T. Suzuki, and S. Sakurai, “Cross-sectional view of myelin figures,” Biochim. Biophys. Acta985(1), 101–105 (1989). [CrossRef]
  35. C. D. Santangelo and P. Pincus, “Coiling instabilities of multilamellar tubes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 061501 (2002). [CrossRef]
  36. M. Haran, A. Chowdhury, C. Manohar, and J. Bellare, “Myelin growth and coiling,” Colloids Surf. A Physicochem. Eng. Asp.205(1-2), 21–30 (2002). [CrossRef]
  37. K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids62(2), 87–91 (1992). [CrossRef]
  38. L. N. Zou, “Myelin figures: the buckling and flow of wet soap,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(6), 061502 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited