OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 7 — Jul. 1, 2013
  • pp: 1031–1044

Versatile optical coherence tomography for imaging the human eye

Aizhu Tao, Yilei Shao, Jianguang Zhong, Hong Jiang, Meixiao Shen, and Jianhua Wang  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 7, pp. 1031-1044 (2013)
http://dx.doi.org/10.1364/BOE.4.001031


View Full Text Article

Enhanced HTML    Acrobat PDF (15116 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated the feasibility of a CMOS-based spectral domain OCT (SD-OCT) for versatile ophthalmic applications of imaging the corneal epithelium, limbus, ocular surface, contact lens, crystalline lens, retina, and full eye in vivo. The system was based on a single spectrometer and an alternating reference arm with four mirrors. A galvanometer scanner was used to switch the reference beam among the four mirrors, depending on the imaging application. An axial resolution of 7.7 μm in air, a scan depth of up to 37.7 mm in air, and a scan speed of up to 70,000 A-lines per second were achieved. The approach has the capability to provide high-resolution imaging of the corneal epithelium, contact lens, ocular surface, and tear meniscus. Using two reference mirrors, the zero delay lines were alternatively placed on the front cornea or on the back lens. The entire ocular anterior segment was imaged by registering and overlapping the two images. The full eye through the pupil was measured when the reference arm was switched among the four reference mirrors. After mounting a 60 D lens in the sample arm, this SD-OCT was used to image the retina, including the macula and optical nerve head. This system demonstrates versatility and simplicity for multi-purpose ophthalmic applications.

© 2013 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: March 12, 2013
Revised Manuscript: May 22, 2013
Manuscript Accepted: May 31, 2013
Published: June 4, 2013

Citation
Aizhu Tao, Yilei Shao, Jianguang Zhong, Hong Jiang, Meixiao Shen, and Jianhua Wang, "Versatile optical coherence tomography for imaging the human eye," Biomed. Opt. Express 4, 1031-1044 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-7-1031


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(4), 537–542 (2008). [CrossRef] [PubMed]
  3. H. W. Jeong, S. W. Lee, and B. M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express20(17), 19148–19159 (2012). [CrossRef] [PubMed]
  4. K. Bizheva, N. Hutchings, L. Sorbara, A. A. Moayed, and T. Simpson, “In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT,” Biomed. Opt. Express2(7), 1794–1802 (2011). [CrossRef] [PubMed]
  5. Y. Li, O. Tan, R. Brass, J. L. Weiss, and D. Huang, “Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes,” Ophthalmology119(12), 2425–2433 (2012). [CrossRef] [PubMed]
  6. H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express1(5), 1491–1501 (2010). [CrossRef] [PubMed]
  7. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009). [CrossRef] [PubMed]
  8. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  9. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012). [CrossRef] [PubMed]
  10. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  11. J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009). [CrossRef] [PubMed]
  12. C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express17(11), 8947–8955 (2009). [CrossRef] [PubMed]
  13. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012). [CrossRef] [PubMed]
  14. C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012). [CrossRef] [PubMed]
  15. C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest Ophthalmol. Vis. Sci.52, ARVO E-Abstract 3023 (2011).
  16. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express3(7), 1506–1520 (2012). [CrossRef] [PubMed]
  17. American National Standards Institute, “American national standard for safe use of lasers” (Laser Institute of America, Orlando, FL, 2000), pp. 45–49.
  18. H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett.33(22), 2632–2634 (2008). [CrossRef] [PubMed]
  19. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011). [CrossRef] [PubMed]
  20. J. Ai and L. V. Wang, “Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch,” Appl. Phys. Lett.88(11), 111115 (2006). [CrossRef]
  21. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  22. M. Shen, L. Cui, C. Riley, M. R. Wang, and J. Wang, “Characterization of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(7), 4091–4097 (2011). [CrossRef] [PubMed]
  23. C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea31(9), 1036–1043 (2012). [CrossRef] [PubMed]
  24. M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt.16(5), 056007 (2011). [CrossRef] [PubMed]
  25. Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013). [CrossRef] [PubMed]
  26. D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011). [CrossRef] [PubMed]
  27. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol.21(11), 1361–1367 (2003). [CrossRef] [PubMed]
  28. T. Schmoll, A. Unterhuber, C. Kolbitsch, T. Le, A. Stingl, and R. Leitgeb, “Precise thickness measurements of Bowman’s layer, epithelium, and tear film,” Optom. Vis. Sci.89(5), E795–E802 (2012). [CrossRef] [PubMed]
  29. H. Jiang, F. Abukhalil, M. Shen, G. Gregori, B. L. Lam, Y. Wang, and J. Wang, “Slit-lamp-adapted ultra-high resolution OCT for imaging the posterior segment of the eye,” Ophthalmic Surg. Lasers Imaging43(1), 76–81 (2012). [CrossRef] [PubMed]
  30. J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011). [CrossRef] [PubMed]
  31. K. L. Schulle and D. A. Berntsen, “Repeatability of on- and off-axis eye length measurements using the lenstar,” Optom. Vis. Sci.90(1), 16–22 (2013). [CrossRef] [PubMed]
  32. J. Zhao, Z. Chen, Z. Zhou, L. Ding, and X. Zhou, “Evaluation of the repeatability of the Lenstar and comparison with two other non-contact biometric devices in myopes,” Clin. Exp. Optom.96(1), 92–99 (2013). [PubMed]
  33. J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, and J. Wang, “Automatic axial biometry of the whole eye using ultra-long scan depth optical coherence tomography,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 1498 (2013).
  34. Y. Li, C. Lowder, X. Zhang, and D. Huang, “Anterior chamber cell grading by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(1), 258–265 (2013). [CrossRef] [PubMed]
  35. J. J. Liu, A. Witkin, M. Adhi, I. Grulkowski, M. Kraus, C. Lu, and J. Hornegger, “Enhanced vitreal imaging of the vitreoretinal interface in normal eyes using swept-source OCT,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 3167 (2013).
  36. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  37. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  38. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express15(25), 16922–16932 (2007). [CrossRef] [PubMed]
  39. C. de Freitas, M. Ruggeri, F. Manns, A. Ho, and J. M. Parel, “In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography,” Opt. Lett.38(2), 85–87 (2013). [CrossRef] [PubMed]
  40. A. Sakamoto, M. Hangai, and N. Yoshimura, “Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases,” Ophthalmology115(6), 1071–1078, e7 (2008). [CrossRef] [PubMed]
  41. Q. Chen, J. Wang, A. Tao, M. Shen, S. Jiao, and F. Lu, “Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses,” Invest. Ophthalmol. Vis. Sci.51(4), 1988–1993 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited