OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 7 — Jul. 1, 2013
  • pp: 1061–1073

Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion

S. M. Shams Kazmi, Anthony J. Salvaggio, Arnold D. Estrada, Michael A. Hemati, Nazariy K. Shaydyuk, Emannuel Roussakis, Theresa A. Jones, Sergei A. Vinogradov, and Andrew K. Dunn  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 7, pp. 1061-1073 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4045 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Occlusions in single cortical microvessels lead to a reduction in oxygen supply, but this decrement has not been able to be quantified in three dimensions at the level of individual vessels using a single instrument. We demonstrate a combined optical system using two-photon phosphorescence lifetime and fluorescence microscopy (2PLM) to characterize the partial pressure of oxygen (pO2) in single descending cortical arterioles in the mouse brain before and after generating a targeted photothrombotic occlusion. Integrated real-time Laser Speckle Contrast Imaging (LSCI) provides wide-field perfusion maps that are used to monitor and guide the occlusion process while 2PLM maps changes in intravascular oxygen tension. We present the technique’s utility in highlighting the effects of vascular networking on the residual intravascular oxygen tensions measured after occlusion in three dimensions.

© 2013 OSA

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1460) Medical optics and biotechnology : Blood gas monitoring
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.5380) Medical optics and biotechnology : Physiology
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Functional Imaging

Original Manuscript: May 2, 2013
Revised Manuscript: June 7, 2013
Manuscript Accepted: June 7, 2013
Published: June 10, 2013

Virtual Issues
July 16, 2013 Spotlight on Optics

S. M. Shams Kazmi, Anthony J. Salvaggio, Arnold D. Estrada, Michael A. Hemati, Nazariy K. Shaydyuk, Emannuel Roussakis, Theresa A. Jones, Sergei A. Vinogradov, and Andrew K. Dunn, "Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion," Biomed. Opt. Express 4, 1061-1073 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. G. Tsai, P. C. Johnson, and M. Intaglietta, “Oxygen gradients in the microcirculation,” Physiol. Rev.83(3), 933–963 (2003). [PubMed]
  2. E. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pflugers Arch.437(4), 617–623 (1999). [CrossRef] [PubMed]
  3. Q. Fang, S. Sakadžić, L. Ruvinskaya, A. Devor, A. M. Dale, and D. A. Boas, “Oxygen advection and diffusion in a three- dimensional vascular anatomical network,” Opt. Express16(22), 17530–17541 (2008). [CrossRef] [PubMed]
  4. D. A. Beard and J. B. Bassingthwaighte, “Modeling advection and diffusion of oxygen in complex vascular networks,” Ann. Biomed. Eng.29(4), 298–310 (2001). [CrossRef] [PubMed]
  5. A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012). [CrossRef] [PubMed]
  6. A. D. Estrada, A. Ponticorvo, T. N. Ford, and A. K. Dunn, “Microvascular oxygen quantification using two-photon microscopy,” Opt. Lett.33(10), 1038–1040 (2008). [CrossRef] [PubMed]
  7. M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, W. Wu, S. Ruvinskaya, S. A. Vinogradov, and D. A. Boas, “Optical monitoring of oxygen tension in cortical microvessels with confocal microscopy,” Opt. Express17(25), 22341–22350 (2009). [CrossRef] [PubMed]
  8. O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem9(12), 1673–1679 (2008). [CrossRef] [PubMed]
  9. S. Sakadžić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods7(9), 755–759 (2010). [CrossRef] [PubMed]
  10. J. Lecoq, A. Parpaleix, E. Roussakis, M. Ducros, Y. G. Houssen, S. A. Vinogradov, and S. Charpak, “Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels,” Nat. Med.17(7), 893–898 (2011). [CrossRef] [PubMed]
  11. A. Parpaleix, Y. G. Houssen, and S. Charpak, “Imaging local neuronal activity by monitoring PO₂ transients in capillaries,” Nat. Med.19(2), 241–246 (2013). [CrossRef] [PubMed]
  12. A. Devor, S. Sakadžić, P. A. Saisan, M. A. Yaseen, E. Roussakis, V. J. Srinivasan, S. A. Vinogradov, B. R. Rosen, R. B. Buxton, A. M. Dale, and D. A. Boas, “‘Overshoot’ of O₂ is required to maintain baseline tissue oxygenation at locations distal to blood vessels,” J. Neurosci.31(38), 13676–13681 (2011). [CrossRef] [PubMed]
  13. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40(2), 367–377 (2012). [CrossRef] [PubMed]
  14. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010). [CrossRef] [PubMed]
  15. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001). [CrossRef] [PubMed]
  16. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods111(1), 29–37 (2001). [CrossRef] [PubMed]
  17. A. Y. Lebedev, T. Troxler, and S. A. Vinogradov, “Design of metalloporphyrin-based dendritic nanoprobes for two-photon microscopy of oxygen,” J. Porphyr. Phthalocyanines12(12), 1261–1269 (2008). [CrossRef] [PubMed]
  18. W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008). [CrossRef] [PubMed]
  19. K. A. Hossmann, “Experimental models for the investigation of brain ischemia,” Cardiovasc. Res.39(1), 106–120 (1998). [CrossRef] [PubMed]
  20. A. Durukan and T. Tatlisumak, “Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia,” Pharmacol. Biochem. Behav.87(1), 179–197 (2007). [CrossRef] [PubMed]
  21. P. Li and T. H. Murphy, “Two-photon imaging during prolonged middle cerebral artery occlusion in mice reveals recovery of dendritic structure after reperfusion,” J. Neurosci.28(46), 11970–11979 (2008). [CrossRef] [PubMed]
  22. G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab.30(8), 1432–1436 (2010). [CrossRef] [PubMed]
  23. C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006). [CrossRef] [PubMed]
  24. N. Nishimura, C. B. Schaffer, B. Friedman, P. D. Lyden, and D. Kleinfeld, “Penetrating arterioles are a bottleneck in the perfusion of neocortex,” Proc. Natl. Acad. Sci. U.S.A.104(1), 365–370 (2007). [CrossRef] [PubMed]
  25. C. D. Klaassen, “Pharmacokinetics of rose bengal in the rat, rabbit, dog and guinea pig,” Toxicol. Appl. Pharmacol.38(1), 85–100 (1976). [CrossRef] [PubMed]
  26. B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol.17(5), 497–504 (1985). [CrossRef] [PubMed]
  27. C. A. Wilson and D. L. Hatchell, “Photodynamic retinal vascular thrombosis. Rate and duration of vascular occlusion,” Invest. Ophthalmol. Vis. Sci.32(8), 2357–2365 (1991). [PubMed]
  28. A. B. Parthasarathy, S. M. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express1(1), 246–259 (2010). [CrossRef] [PubMed]
  29. I. G. Kassissia, C. A. Goresky, C. P. Rose, A. J. Schwab, A. Simard, P. M. Huet, and G. G. Bach, “Tracer oxygen distribution is barrier-limited in the cerebral microcirculation,” Circ. Res.77(6), 1201–1211 (1995). [CrossRef] [PubMed]
  30. A. Y. Shih, P. Blinder, P. S. Tsai, B. Friedman, G. Stanley, P. D. Lyden, and D. Kleinfeld, “The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit,” Nat. Neurosci.16(1), 55–63 (2012). [CrossRef] [PubMed]
  31. S. S. Howard, A. Straub, N. G. Horton, D. Kobat, and C. Xu, “Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy,” Nat. Photonics7(1), 33–37 (2012). [CrossRef] [PubMed]
  32. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009). [CrossRef] [PubMed]
  33. W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. D. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci.14(8), 1089–1093 (2011). [CrossRef] [PubMed]
  34. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics7(3), 205–209 (2013). [CrossRef]
  35. A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, “Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations,” J. Cereb. Blood Flow Metab.26(5), 645–653 (2006). [CrossRef] [PubMed]
  36. S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013). [CrossRef] [PubMed]
  37. A. F. H. McCaslin, B. R. Chen, A. J. Radosevich, B. Cauli, and E. M. C. Hillman, “In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: implications for neurovascular coupling,” J. Cereb. Blood Flow Metab.31(3), 795–806 (2011). [CrossRef] [PubMed]
  38. P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci.29(46), 14553–14570 (2009). [CrossRef] [PubMed]
  39. B. R. Duling, W. Kuschinsky, and M. Wahl, “Measurements of the perivascular PO2 in the vicinity of the pial vessels of the cat,” Pflugers Arch.383(1), 29–34 (1979). [CrossRef] [PubMed]
  40. K. P. Ivanov, A. N. Derry, E. P. Vovenko, M. O. Samoilov, and D. G. Semionov, “Direct measurements of oxygen tension at the surface of arterioles, capillaries and venules of the cerebral cortex,” Pflugers Arch.393(1), 118–120 (1982). [CrossRef] [PubMed]
  41. M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, S. A. Vinogradov, and D. A. Boas, “Optically based quantification of absolute cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution in rodents,” Proc. SPIE7548, 75483R, 75483R-9 (2010). [CrossRef]
  42. P. Hermán, H. K. F. Trübel, and F. Hyder, “A multiparametric assessment of oxygen efflux from the brain,” J. Cereb. Blood Flow Metab.26(1), 79–91 (2006). [CrossRef] [PubMed]
  43. M. A. Yaseen, S. Sakadžić, W. Wu, W. Becker, K. A. Kasischke, and D. A. Boas, “In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH,” Biomed. Opt. Express4(2), 307–321 (2013). [CrossRef] [PubMed]
  44. K. A. Kasischke, E. M. Lambert, B. Panepento, A. Sun, H. A. Gelbard, R. W. Burgess, T. H. Foster, and M. Nedergaard, “Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions,” J. Cereb. Blood Flow Metab.31(1), 68–81 (2011). [CrossRef] [PubMed]
  45. S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol.5(5), e119 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: PDF (89 KB)     
» Media 2: MOV (4832 KB)     
» Media 3: MOV (22736 KB)     
» Media 4: MOV (34058 KB)     
» Media 5: MOV (40165 KB)     
» Media 6: PDF (550 KB)     
» Media 7: PDF (42 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited