OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 7 — Jul. 1, 2013
  • pp: 1074–1082

Integrated fluorescence correlation spectroscopy device for point-of-care clinical applications

Eben Olson, Richard Torres, and Michael J. Levene  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 7, pp. 1074-1082 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (910 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe an optical system which reduces the cost and complexity of fluorescence correlation spectroscopy (FCS), intended to increase the suitability of the technique for clinical use. Integration of the focusing optics and sample chamber into a plastic component produces a design which is simple to align and operate. We validate the system by measurements on fluorescent dye, and compare the results to a commercial instrument. In addition, we demonstrate its application to measurements of concentration and multimerization of the clinically relevant protein von Willebrand factor (vWF) in human plasma.

© 2013 OSA

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:
Clinical Instrumentation

Original Manuscript: March 27, 2013
Revised Manuscript: May 30, 2013
Manuscript Accepted: May 30, 2013
Published: June 11, 2013

Eben Olson, Richard Torres, and Michael J. Levene, "Integrated fluorescence correlation spectroscopy device for point-of-care clinical applications," Biomed. Opt. Express 4, 1074-1082 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy: I. Conceptual basis and theory,” Biopolymers13, 1–27 (1974). [CrossRef]
  2. W. W. Webb, “Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus,” Appl. Opt.40(24), 3969–3983 (2001). [CrossRef]
  3. A. Shahzad, M. Knapp, I. Lang, and G. Khler, “The use of fluorescence correlation spectroscopy (FCS) as an alternative biomarker detection technique: a preliminary study,” J. Cell. Mol. Med.15(12), 2706–2711 (2011). [CrossRef] [PubMed]
  4. J. Bieschke, A. Giese, W. Schulz-Schaeffer, I. Zerr, S. Poser, M. Eigen, and H. Kretzschmar, “Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5468–5473 (2000). [CrossRef] [PubMed]
  5. M. Pitschke, R. Prior, M. Haupt, and D. Riesner, “Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy,” Nat. Med.4(7), 832–834 (1998). [CrossRef] [PubMed]
  6. R. Torres, J. R. Genzen, and M. J. Levene, “Clinical measurement of von Willebrand factor by fluorescence correlation spectroscopy,” Clin. Chem.58(6), 1010–1018 (2012). [CrossRef] [PubMed]
  7. T. Sonehara, T. Anazawa, and K. Uchida, “Improvement of biomolecule quantification precision and use of a single-element aspheric objective lens in fluorescence correlation spectroscopy,” Anal. Chem.78(24), 8395–8405 (2006). [CrossRef] [PubMed]
  8. A. Serov, R. Rao, M. Gsch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelecron.20(3), 431–435 (2004). [CrossRef]
  9. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express17(21), 19085–19092 (2009). [CrossRef]
  10. J. Wenger, D. Grard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem.80(17), 6800–6804 (2008). [CrossRef] [PubMed]
  11. G. T. Hermanson, Bioconjugate Techniques (Academic Press, 2010).
  12. J. Janzen, T. G. Elliott, C. J. Carter, and D. E. Brooks, “Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity,” Biorheology37(3), 225–237 (2000). [PubMed]
  13. U. Golebiewska, J. G. Kay, T. Masters, S. Grinstein, W. Im, R. W. Pastor, S. Scarlata, and S. McLaughlin, “Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages,” Mol. Biol. Cell22(18), 3498–3507 (2011). [CrossRef] [PubMed]
  14. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83(4), 2300–2317 (2002). [CrossRef] [PubMed]
  15. Z. M. Ruggeri, P. M. Mannucci, R. Lombardi, A. B. Federici, and T. S. Zimmerman, “Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: implications for pathophysiology and therapy of von Willebrand’s disease subtypes,” Blood59(6), 1272–1278 (1982). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited