OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 7 — Jul. 1, 2013
  • pp: 1083–1090

In vitro measurements of physiological glucose concentrations in biological fluids using mid-infrared light

Sabbir Liakat, Kevin A. Bors, Tzu-Yung Huang, Anna P. M. Michel, Eric Zanghi, and Claire F. Gmachl  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 7, pp. 1083-1090 (2013)
http://dx.doi.org/10.1364/BOE.4.001083


View Full Text Article

Enhanced HTML    Acrobat PDF (1161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mid-infrared transmission spectroscopy using broadband mid-infrared or Quantum Cascade laser sources is used to predict glucose concentrations of aqueous and serum solutions containing physiologically relevant amounts of glucose (50-400 mg/dL). We employ partial least squares regression to generate a calibration model using a subset of the spectra taken and to predict concentrations from new spectra. Clinically accurate measurements with respect to a Clarke error grid were made for concentrations as low as 30 mg/dL, regardless of background solvent. These results are an important and encouraging step in the work towards developing a noninvasive in vivo glucose sensor in the mid-infrared.

© 2013 OSA

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: April 8, 2013
Revised Manuscript: May 31, 2013
Manuscript Accepted: June 9, 2013
Published: June 11, 2013

Citation
Sabbir Liakat, Kevin A. Bors, Tzu-Yung Huang, Anna P. M. Michel, Eric Zanghi, and Claire F. Gmachl, "In vitro measurements of physiological glucose concentrations in biological fluids using mid-infrared light," Biomed. Opt. Express 4, 1083-1090 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-7-1083


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. World Health Organization facts, http://www.who.int/mediacentre/factsheets/fs312/en/index.html .
  2. O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45(2), 165–177 (1999). [PubMed]
  3. V. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC, 2009).
  4. K. Maruo, M. Tsurugi, M. Tamura, and Y. Ozaki, “In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy,” Appl. Spectrosc.57(10), 1236–1244 (2003). [CrossRef] [PubMed]
  5. R. Marbach, “A new method for multivariate calibration,” J. Near Infrared Spectrosc.13(1), 241–254 (2005). [CrossRef]
  6. N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011). [CrossRef] [PubMed]
  7. H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys.22(4), 797–804 (2012). [CrossRef]
  8. G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput.31(3), 284–290 (1993). [CrossRef] [PubMed]
  9. X. Guo, A. Mandelis, and B. Zinman, “Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry,” Biomed. Opt. Express3(11), 3012–3021 (2012). [CrossRef] [PubMed]
  10. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009). [CrossRef]
  11. S. Liakat, A. Michel, K. Bors, and C. Gmachl, “Mid-infrared (λ=8.4-9.9 μm) light scattering from porcine tissue,” Appl. Phys. Lett.101(9), 093705 (2012). [CrossRef]
  12. A. P. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Biomed. Opt. Express4(4), 520–530 (2013). [CrossRef] [PubMed]
  13. M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B110(2), 233–239 (2013). [CrossRef]
  14. H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approach to noninvasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc.38(1-2), 209–215 (2005). [CrossRef]
  15. W. B. Martin, S. Mirov, and R. Venugopalan, “Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum,” Appl. Spectrosc.59(7), 881–884 (2005). [CrossRef] [PubMed]
  16. W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987). [CrossRef] [PubMed]
  17. A. Guyton and J. Hall, “Insulin, glucagon, and diabetes mellitus,” in Textbook of Medical Physiology (W.B. Saunders Co., 1996), Chap. 78, pp. 971–983.
  18. American Diabetes Association, “Living with diabetes: blood glucose control,” http://www.diabetes.org .
  19. S. de Jong, “SIMPLS: an alternative approach to partial least squares regression,” Chemom. Intell. Lab. Syst.18(3), 251–263 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited