OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 7 — Jul. 1, 2013
  • pp: 1091–1103

Multiple contrast metrics from the measurements of a digital confocal microscope

Alexandre S. Goy, Michaël Unser, and Demetri Psaltis  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 7, pp. 1091-1103 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe various methods to process the data collected with a digital confocal microscope (DCM) in order to get more information than what we could get from a conventional confocal system. Different metrics can be extracted from the data collected with the DCM in order to produce images that reveal different features of the sample. The integrated phase of the scattered field allows for the three-dimensional reconstruction of the refractive index distribution. In a similar way, the integration of the field intensity yields the absorption coefficient distribution. The deflection of the digitally reconstructed focus reveals the sample-induced aberrations and the RMS width of the focus gives an indication on the local scattering coefficient. Finally, in addition to the conventional confocal metric, which consists in integrating the intensity within the pinhole, the DCM allows for the measurement of the phase within the pinhole. This metrics is close to the whole-field integrated phase and thus gives a qualitative image of the refractive index distribution.

© 2013 OSA

OCIS Codes
(110.6960) Imaging systems : Tomography
(180.1790) Microscopy : Confocal microscopy
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: March 28, 2013
Revised Manuscript: May 30, 2013
Manuscript Accepted: June 3, 2013
Published: June 12, 2013

Alexandre S. Goy, Michaël Unser, and Demetri Psaltis, "Multiple contrast metrics from the measurements of a digital confocal microscope," Biomed. Opt. Express 4, 1091-1103 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Minsky, “Microscopy apparatus,” U.S. patent 3,013,467 (1961).
  2. C. J. R. Sheppard and A. Coudhury, “Image formation in the scanning microscope,” Opt. Acta24(10), 1051–1073 (1977). [CrossRef]
  3. C. Sheppard and D. Shotton, Confocal Laser Scanning Microscopy (BIOS Scientific Publishers, 1997).
  4. A. E. Dixon, S. Damaskinos, and M. R. Atkinson, “A scanning confocal microscope for transmission and reflection imaging,” Nature351, 551–553 (1991). [CrossRef]
  5. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett.24, 811–813 (1999). [CrossRef]
  6. C. Yang and J. Mertz, “Transmission confocal laser scanning microscopy with a virtual pinhole based on nonlinear detection,” Opt. Lett.28, 224–226 (2003). [CrossRef] [PubMed]
  7. J. W. OByrne, P. W. Fekete, M. R. Arnison, H. Zhao, M. Serrano, D. Philp, W. Sudiarta, and C. J. Cogswell, “Adaptive optics in confocal microscopy,” in Proceedings of the 2nd International Workshop on Adaptive Optics for Industry and Medicine, G. D. Love, ed. (World Scientific, 1999).
  8. A. Goy and D. Psaltis, “Digital confocal microscope,” Opt. Express20, 22720–22727 (2012). [CrossRef] [PubMed]
  9. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” App. Opt.39, 4070–4075 (2000). [CrossRef]
  10. M. D. Feit and J. A. Fleck, “Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams,” J. Opt. Soc. Am. B5(3), 633–640 (1988). [CrossRef]
  11. G. N. Vishnyakov, G. G. Levin, V. L. Minaev, V. V. Pickalov, and A. V. Likhachev, “Tomographic interference microscopy of living cells,” Microscopy and Analysis18, 15–17 (2004).
  12. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett.31, 178–180 (2006). [CrossRef] [PubMed]
  13. F. Charrière, N. Pavillon, T. Colomb, and C. Depeursinge, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express14, 7005–7013 (2006). [CrossRef] [PubMed]
  14. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4, 717–719 (2007). [CrossRef] [PubMed]
  15. W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett.33, 171–173 (2008). [CrossRef] [PubMed]
  16. M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol.19, 074009 (2008). [CrossRef]
  17. K. Dillon and Y. Fainman, “Depth sectioning of attenuation,” J. Opt. Soc. Am. A27, 1347–1354 (2010). [CrossRef]
  18. K. Dillon and Y. Fainman, “Computational confocal tomography for simultaneous reconstruction of objects, occlusions and aberrations,” App. Opt.49(13), 2529–2538 (2010). [CrossRef]
  19. S. Helgason, The Radon Transform, 2nd ed. (Birkhauser, 1999).
  20. N. S. Landkof, Foundation of Modern Potential Theory (Springer Verlag, 1972). [CrossRef]
  21. S. Lai, R. A. McLeod, P. Jacquemin, S. Atalick, and R. Herring, “An algorithm for 3-D refractive index measurement in holographic confocal microscopy,” Ultramicroscopy107, 196–201 (2007). [CrossRef]
  22. N. Lue, W. Choi, K. Badizadegan, R. R. Dasari, M. S. Feld, and G. Popescu, “Confocal diffraction phase microscopy of live cells,” Opt. Lett.33, 2074–2076 (2008). [CrossRef] [PubMed]
  23. R. M. Goldstein, H. A. Zebken, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci.23(4), 713–720 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited