OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 7 — Jul. 1, 2013
  • pp: 1104–1118

Direct identification of breast cancer pathologies using blind separation of label-free localized reflectance measurements

Alma Eguizabal, Ashley M. Laughney, Pilar Beatriz García-Allende, Venkataramanan Krishnaswamy, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue, Jose M. Lopez-Higuera, and Olga M. Conde  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 7, pp. 1104-1118 (2013)
http://dx.doi.org/10.1364/BOE.4.001104


View Full Text Article

Enhanced HTML    Acrobat PDF (3964 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Breast tumors are blindly identified using Principal (PCA) and Independent Component Analysis (ICA) of localized reflectance measurements. No assumption of a particular theoretical model for the reflectance needs to be made, while the resulting features are proven to have discriminative power of breast pathologies. Normal, benign and malignant breast tissue types in lumpectomy specimens were imaged ex vivo and a surgeon-guided calibration of the system is proposed to overcome the limitations of the blind analysis. A simple, fast and linear classifier has been proposed where no training information is required for the diagnosis. A set of 29 breast tissue specimens have been diagnosed with a sensitivity of 96% and specificity of 95% when discriminating benign from malignant pathologies. The proposed hybrid combination PCA-ICA enhanced diagnostic discrimination, providing tumor probability maps, and intermediate PCA parameters reflected tissue optical properties.

© 2013 OSA

OCIS Codes
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: March 27, 2013
Revised Manuscript: May 10, 2013
Manuscript Accepted: May 21, 2013
Published: June 12, 2013

Citation
Alma Eguizabal, Ashley M. Laughney, Pilar Beatriz García-Allende, Venkataramanan Krishnaswamy, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue, Jose M. Lopez-Higuera, and Olga M. Conde, "Direct identification of breast cancer pathologies using blind separation of label-free localized reflectance measurements," Biomed. Opt. Express 4, 1104-1118 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-7-1104


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. World Health Organization (2008), http://www.who.int/en/
  2. F. Fitzal, O. Riedl, and R. Jakesz, “Recent developments in breast-conserving surgery for breast cancer patients,” Langenbecks Arch. Surg.394(4), 591–609 (2009). [CrossRef] [PubMed]
  3. R. G. Pleijhuis, M. Graafland, J. de Vries, J. Bart, J. S. de Jong, and G. M. van Dam, “Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions,” Ann. Surg. Oncol.16(10), 2717–2730 (2009). [CrossRef] [PubMed]
  4. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100(21), 12349–12354 (2003). [CrossRef] [PubMed]
  5. A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res.18(22), 6315–6325 (2012). [CrossRef] [PubMed]
  6. V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, J. A. O’Hara, T. Hasan, and B. W. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis, and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt.14(1), 014004 (2009). [CrossRef] [PubMed]
  7. S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express17(2), 860–871 (2009). [CrossRef] [PubMed]
  8. G. Zonios and A. Dimou, “Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study,” Biomed. Opt. Express2(12), 3284–3294 (2011). [CrossRef] [PubMed]
  9. S. L. Jacques and S. Prahl, Oregon Medical Laser Center (2010).
  10. J. Glatz, N. C. Deliolanis, A. Buehler, D. Razansky, and V. Ntziachristos, “Blind source unmixing in multi-spectral optoacoustic tomography,” Opt. Express19(4), 3175–3184 (2011). [CrossRef] [PubMed]
  11. I. Schelkanova and V. Toronov, “Independent component analysis of broadband near-infrared spectroscopy data acquired on adult human head,” Biomed. Opt. Express3(1), 64–74 (2012). [CrossRef] [PubMed]
  12. S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt.12(6), 062111 (2007). [CrossRef] [PubMed]
  13. J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt.14(5), 054032 (2009). [CrossRef] [PubMed]
  14. J. L. Semmlow, Biosignal and Biomedical Image Processing: MATLAB-Based Applications (CRC Press, 2004), Chap. 9.
  15. R. Gallardo-Caballero, C. J. García-Orellana, H. M. González-Velasco, and M. Macías-Macías, “Independent component analysis applied to detection of early breast cancer signs,” in Proceeding of 9th International Work-Conference on Artificial Neural Networks (IWANN, San Sebastian, Spain, 2007), pp. 988–995.
  16. I. Kopriva and A. Peršin, “Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent images for tumour demarcation,” Med. Image Anal.13(3), 507–518 (2009). [CrossRef] [PubMed]
  17. F. Abu-Amara and I. Abdel-Qader, “Detection of breast cancer using independent component analysis,” in Proceedings of IEEE International Conference on Electro/Information Technology (Institute of Electrical and Electronics Engineers, New York, 2007), pp.428–431. [CrossRef]
  18. A. M. Laughney, V. Krishnaswamy, P. B. Garcia-Allende, O. M. Conde, W. A. Wells, K. D. Paulsen, and B. W. Pogue, “Automated classification of breast pathology using local measures of broadband reflectance,” J. Biomed. Opt.15(6), 066019 (2010). [CrossRef] [PubMed]
  19. A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Netw.13(4-5), 411–430 (2000). [CrossRef] [PubMed]
  20. A. Hyvärinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Trans. Neural Netw.10(3), 626–634 (1999). [CrossRef] [PubMed]
  21. R. Bro, E. Acar, and T. G. Kolda, “Resolving the sign ambiguity in the singular value decomposition,” J. Chemometr.22(2), 135–140 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited