OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 7 — Jul. 1, 2013
  • pp: 1133–1152

Retinal layer segmentation of macular OCT images using boundary classification

Andrew Lang, Aaron Carass, Matthew Hauser, Elias S. Sotirchos, Peter A. Calabresi, Howard S. Ying, and Jerry L. Prince  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 7, pp. 1133-1152 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3113 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical coherence tomography (OCT) has proven to be an essential imaging modality for ophthalmology and is proving to be very important in neurology. OCT enables high resolution imaging of the retina, both at the optic nerve head and the macula. Macular retinal layer thicknesses provide useful diagnostic information and have been shown to correlate well with measures of disease severity in several diseases. Since manual segmentation of these layers is time consuming and prone to bias, automatic segmentation methods are critical for full utilization of this technology. In this work, we build a random forest classifier to segment eight retinal layers in macular cube images acquired by OCT. The random forest classifier learns the boundary pixels between layers, producing an accurate probability map for each boundary, which is then processed to finalize the boundaries. Using this algorithm, we can accurately segment the entire retina contained in the macular cube to an accuracy of at least 4.3 microns for any of the nine boundaries. Experiments were carried out on both healthy and multiple sclerosis subjects, with no difference in the accuracy of our algorithm found between the groups.

© 2013 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Image Processing

Original Manuscript: April 9, 2013
Revised Manuscript: May 30, 2013
Manuscript Accepted: June 1, 2013
Published: June 14, 2013

Andrew Lang, Aaron Carass, Matthew Hauser, Elias S. Sotirchos, Peter A. Calabresi, Howard S. Ying, and Jerry L. Prince, "Retinal layer segmentation of macular OCT images using boundary classification," Biomed. Opt. Express 4, 1133-1152 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. G. Fujimoto, W. Drexler, J. S. Schuman, and C. K. Hitzenberger, “Optical coherence tomography (OCT) in ophthalmology: introduction,” Opt. Express17, 3978–3979 (2009). [CrossRef] [PubMed]
  2. P. Jindahra, T. R. Hedges, C. E. Mendoza-Santiesteban, and G. T. Plant, “Optical coherence tomography of the retina: applications in neurology,” Curr. Opin. Neurol.23, 16–23 (2010). [CrossRef]
  3. E. M. Frohman, J. G. Fujimoto, T. C. Frohman, P. A. Calabresi, G. Cutter, and L. J. Balcer, “Optical coherence tomography: a window into the mechanisms of multiple sclerosis,” Nat. Clin. Pract. Neurol.4, 664–675 (2008). [CrossRef] [PubMed]
  4. S. Saidha, S. B. Syc, M. A. Ibrahim, C. Eckstein, C. V. Warner, S. K. Farrell, J. D. Oakley, M. K. Durbin, S. A. Meyer, L. J. Balcer, E. M. Frohman, J. M. Rosenzweig, S. D. Newsome, J. N. Ratchford, Q. D. Nguyen, and P. A. Calabresi, “Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography,” Brain134, 518–533 (2011). [CrossRef] [PubMed]
  5. S. Saidha, E. S. Sotirchos, M. A. Ibrahim, C. M. Crainiceanu, J. M. Gelfand, Y. J. Sepah, J. N. Ratchford, J. Oh, M. A. Seigo, S. D. Newsome, L. J. Balcer, E. M. Frohman, A. J. Green, Q. D. Nguyen, and P. A. Calabresi, “Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study,” Lancet Neurol.11, 963–972 (2012). [CrossRef] [PubMed]
  6. H. W. van Dijk, P. H. B. Kok, M. Garvin, M. Sonka, J. H. DeVries, R. P. J. Michels, M. E. J. van Velthoven, R. O. Schlingemann, F. D. Verbraak, and M. D. Abràmoff, “Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy,” Invest. Ophthalmol. Visual Sci.50, 3404–3409 (2009). [CrossRef]
  7. S. Kirbas, K. Turkyilmaz, O. Anlar, A. Tufekci, and M. Durmus, “Retinal nerve fiber layer thickness in patients with Alzheimer disease,” J. Neuroophthalmol.33, 58–61 (2013). [CrossRef]
  8. M. E. Hajee, W. F. March, D. R. Lazzaro, A. H. Wolintz, E. M. Shrier, S. Glazman, and I. G. Bodis-Wollner, “Inner retinal layer thinning in Parkinson disease,” Arch. Ophthalmol.127, 737–741 (2009). [CrossRef] [PubMed]
  9. V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110, 177–189 (2003). [CrossRef] [PubMed]
  10. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,”IEEE Trans. Med. Imaging20, 900–916 (2001). [CrossRef] [PubMed]
  11. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Visual Sci.46, 2012–2017 (2005). [CrossRef]
  12. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express17, 23719–23728 (2009). [CrossRef]
  13. M. Garvin, M. Abramoff, X. Wu, S. Russell, T. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28, 1436–1447 (2009). [CrossRef] [PubMed]
  14. Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express18, 21293–21307 (2010). [CrossRef] [PubMed]
  15. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18, 19413–19428 (2010). [CrossRef] [PubMed]
  16. I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in OCT images and quantitative evaluation of performances,” Pattern Recogn.44, 1590–1603 (2011). [CrossRef]
  17. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express2, 1743–1756 (2011). [CrossRef] [PubMed]
  18. B. J. Antony, M. D. Abràmoff, M. Sonka, Y. H. Kwon, and M. K. Garvin, “Incorporation of texture-based features in optimal graph-theoretic approach with application to the 3-D segmentation of intraretinal surfaces in SD-OCT volumes,” Proc. SPIE8314, 83141G (2012). [CrossRef]
  19. P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schroder, S. De Zanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging32, 531–543 (2013). [CrossRef]
  20. R. F. Spaide and C. A. Curcio, “Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model,” Retina31, 1609–1619 (2011). [CrossRef] [PubMed]
  21. V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express18, 14730–14744 (2010). [CrossRef]
  22. M. Garvin, M. Abramoff, R. Kardon, S. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging27, 1495–1505 (2008). [CrossRef] [PubMed]
  23. L. Breiman, “Random forests,” Mach. Learn.45, 5–32 (2001). [CrossRef]
  24. A. Lang, A. Carass, E. Sotirchos, P. Calabresi, and J. L. Prince, “Segmentation of retinal OCT images using a random forest classifier,” Proc. SPIE8669, 86690R (2013). [CrossRef]
  25. M. A. Mayer, J. Hornegger, C. Y. Mardin, and R. P. Tornow, “Retinal nerve fiber layer segmentation on FD-OCT scans of normal subjects and glaucoma patients,” Biomed. Opt. Express1, 1358–1383 (2010). [CrossRef]
  26. M. S. Nixon and A. S. Aguado, Feature Extraction & Image Processing for Computer Vision, 3rd ed. (Academic Press, 2012).
  27. J. D’Errico, “Inpaint nans,” MATLAB Central File Exchange (2004). http://www.mathworks.com/matlabcentral/fileexchange/4551 .
  28. S. B. Kotsiantis, “Supervised machine learning: a review of classification techniques,” Informatica31, 249–268 (2007).
  29. C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.20, 273–297 (1995). [CrossRef]
  30. R. E. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated predictions,” Mach. Learn.37, 297–336 (1999). [CrossRef]
  31. M. Varma and A. Zisserman, “Texture classification: Are filter banks necessary?” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 691–698.
  32. J.-M. Geusebroek, A. Smeulders, and J. van de Weijer, “Fast anisotropic Gauss filtering,” IEEE Trans. Image Process.12, 938–943 (2003). [CrossRef]
  33. M. Varma and A. Zisserman, “A statistical approach to texture classification from single images,” Int. J. Comput. Vis.62, 61–81 (2005).
  34. A. Criminisi and J. Shotton, Decision Forests for Computer Vision and Medical Image Analysis (Springer, 2013). [CrossRef]
  35. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell.8, 679–698 (1986). [CrossRef] [PubMed]
  36. K. Li, X. Wu, D. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images - a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell.28, 119–134 (2006). [CrossRef] [PubMed]
  37. Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Trans. Pattern Anal. Mach. Intell.26, 1124–1137 (2004). [CrossRef]
  38. J. Huang, X. Liu, Z. Wu, H. Xiao, L. Dustin, and S. Sadda, “Macular thickness measurements in normal eyes with time-domain and fourier-domain optical coherence tomography,” Retina29, 980–987 (2009). [CrossRef] [PubMed]
  39. ETDRS Research Group, “Photocoagulation for diabetic macular edema. early treatment diabetic retinopathy study report number 1.” Arch. Ophthalmol.103, 1796–1806 (1985).
  40. A. Jaiantilal, “Classification and regression by randomforest-matlab,” (2009). http://code.google.com/p/randomforest-matlab .
  41. T. Sharp, “Implementing decision trees and forests on a GPU,” in Proceedings of European Conference on Computer Vision - ECCV 2008, D. A. Forsyth, P. H. S. Torr, and A. Zisserman, eds. (Springer, Heidelberg, 2008), pp. 595–608. [CrossRef]
  42. D. H. Anderson, R. F. Mullins, G. S. Hageman, and L. V. Johnson, “A role for local inflammation in the formation of drusen in the aging eye,” Am. J. Ophthalmol.134, 411–431 (2002). [CrossRef] [PubMed]
  43. M. Fleckenstein, P. C. Issa, H. Helb, S. Schmitz-Valckenberg, R. P. Finger, H. P. N. Scholl, K. U. Loeffler, and F. G. Holz, “High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration,” Invest. Ophthalmol. Visual Sci.49, 4137–4144 (2008). [CrossRef]
  44. D. Zikic, B. Glocker, E. Konukoglu, A. Criminisi, C. Demiralp, J. Shotton, O. Thomas, T. Das, R. Jena, and S. Price, “Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR,” in Proceedings of Medical Image Computing and Computer-Assisted Intervention - MICCAI 2012, N. Ayache, H. Delingette, P. Golland, and K. Mori, eds. (Springer, Heidelberg, 2012), pp. 369–376. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited