OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 7 — Jul. 1, 2013
  • pp: 1153–1165

3D modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes

Nripun Sredar, Kevin M. Ivers, Hope M. Queener, George Zouridakis, and Jason Porter  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 7, pp. 1153-1165 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (6077 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



En face adaptive optics scanning laser ophthalmoscope (AOSLO) images of the anterior lamina cribrosa surface (ALCS) represent a 2D projected view of a 3D laminar surface. Using spectral domain optical coherence tomography images acquired in living monkey eyes, a thin plate spline was used to model the ALCS in 3D. The 2D AOSLO images were registered and projected onto the 3D surface that was then tessellated into a triangular mesh to characterize differences in pore geometry between 2D and 3D images. Following 3D transformation of the anterior laminar surface in 11 normal eyes, mean pore area increased by 5.1 ± 2.0% with a minimal change in pore elongation (mean change = 0.0 ± 0.2%). These small changes were due to the relatively flat laminar surfaces inherent in normal eyes (mean radius of curvature = 3.0 ± 0.5 mm). The mean increase in pore area was larger following 3D transformation in 4 glaucomatous eyes (16.2 ± 6.0%) due to their more steeply curved laminar surfaces (mean radius of curvature = 1.3 ± 0.1 mm), while the change in pore elongation was comparable to that in normal eyes (−0.2 ± 2.0%). This 3D transformation and tessellation method can be used to better characterize and track 3D changes in laminar pore and surface geometries in glaucoma.

© 2013 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

Original Manuscript: April 8, 2013
Revised Manuscript: June 6, 2013
Manuscript Accepted: June 7, 2013
Published: June 14, 2013

Nripun Sredar, Kevin M. Ivers, Hope M. Queener, George Zouridakis, and Jason Porter, "3D modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes," Biomed. Opt. Express 4, 1153-1165 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ.82(11), 844–851 (2004). [PubMed]
  2. H. A. Quigley, “Number of people with glaucoma worldwide,” Br. J. Ophthalmol.80(5), 389–393 (1996). [CrossRef] [PubMed]
  3. World Health Organization (WHO), “Global initiative for the elimination of avoidable blindness: action plan 2006-2011” (WHO, 2007).
  4. H. A. Quigley, E. M. Addicks, W. R. Green, and A. E. Maumenee, “Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage,” Arch. Ophthalmol.99(4), 635–649 (1981). [CrossRef] [PubMed]
  5. D. S. Minckler, “Histology of optic nerve damage in ocular hypertension and early glaucoma,” Surv. Ophthalmol.33(Suppl), 401–402 (1989). [CrossRef] [PubMed]
  6. D. R. Anderson and A. Hendrickson, “Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve,” Invest. Ophthalmol.13(10), 771–783 (1974). [PubMed]
  7. H. A. Quigley and D. R. Anderson, “The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve,” Invest. Ophthalmol.15(8), 606–616 (1976). [PubMed]
  8. N. G. Strouthidis, B. Fortune, H. Yang, I. A. Sigal, and C. F. Burgoyne, “Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.52(3), 1206–1219 (2011). [CrossRef] [PubMed]
  9. J. C. Downs, M. D. Roberts, and C. F. Burgoyne, “Mechanical environment of the optic nerve head in glaucoma,” Optom. Vis. Sci.85(6), E425–E435 (2008). [CrossRef] [PubMed]
  10. A. J. Bellezza, C. J. Rintalan, H. W. Thompson, J. C. Downs, R. T. Hart, and C. F. Burgoyne, “Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.44(2), 623–637 (2003). [CrossRef] [PubMed]
  11. E. J. Lee, T. W. Kim, R. N. Weinreb, M. H. Suh, M. Kang, K. H. Park, S. H. Kim, and D. M. Kim, “Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma,” Invest. Ophthalmol. Vis. Sci.53(1), 198–204 (2012). [CrossRef] [PubMed]
  12. R. Susanna., “The lamina cribrosa and visual field defects in open-angle glaucoma,” Can. J. Ophthalmol.18(3), 124–126 (1983). [PubMed]
  13. G. Tezel, K. Trinkaus, and M. B. Wax, “Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes,” Br. J. Ophthalmol.88(2), 251–256 (2004). [CrossRef] [PubMed]
  14. W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992). [CrossRef] [PubMed]
  15. L. Fontana, A. Bhandari, F. W. Fitzke, and R. A. Hitchings, “In vivo morphometry of the lamina cribrosa and its relation to visual field loss in glaucoma,” Curr. Eye Res.17(4), 363–369 (1998). [CrossRef] [PubMed]
  16. C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express17(22), 19382–19400 (2009). [CrossRef] [PubMed]
  17. A. S. Vilupuru, N. V. Rangaswamy, L. J. Frishman, E. L. Smith, R. S. Harwerth, and A. Roorda, “Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa,” J. Opt. Soc. Am. A24(5), 1417–1425 (2007). [CrossRef] [PubMed]
  18. K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011). [CrossRef] [PubMed]
  19. T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012). [CrossRef] [PubMed]
  20. R. S. Harwerth, E. L. Smith, and L. DeSantis, “Experimental glaucoma: perimetric field defects and intraocular pressure,” J. Glaucoma6(6), 390–401 (1997). [CrossRef] [PubMed]
  21. L. J. Frishman, F. F. Shen, L. Du, J. G. Robson, R. S. Harwerth, E. L. Smith, L. Carter-Dawson, and M. L. Crawford, “The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.37(1), 125–141 (1996). [PubMed]
  22. C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express18(16), 16671–16684 (2010). [CrossRef] [PubMed]
  23. ANSI, “American National Standard for safe use of lasers” (ANSI 136.1–2007) (The Laser Institute of America, 2007).
  24. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A24(5), 1250–1265 (2007). [CrossRef] [PubMed]
  25. F. L. Bookstein, “Thin-plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Mach. Intell.11(6), 567–585 (1989). [CrossRef]
  26. G. Wahba, “How to smooth curves and surfaces with splines and cross-validation,” in Proc. 24th Conf. Design of Experiments (1979), pp. 167–192 .
  27. A. Bartoli, M. Perriollat, and S. Chambon, “Generalized thin-plate spline warps,” Int. J. Comput. Vis.88(1), 85–110 (2010). [CrossRef]
  28. D. H. von Seggern, CRC Standard: Curves and Surfaces (CRC-Press, 1993).
  29. A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica (CRC-Press, 1997).
  30. ANSI, “American national standard for ophthalmics—methods for reporting optical aberrations of eyes” (ANSI Z80.28–2004) (Optical Laboratories Association, 2004).
  31. G. Dahlquist and A. Bjorck, Numerical Methods (Prentice Hall, 1974).
  32. W. S. Cleveland and S. J. Devlin, “Locally weighted regression: An approach to regression analysis by local fitting,” J. Am. Stat. Assoc.83(403), 596–610 (1988). [CrossRef]
  33. H. Yang, J. C. Downs, C. Girkin, L. Sakata, A. Bellezza, H. Thompson, and C. F. Burgoyne, “3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness,” Invest. Ophthalmol. Vis. Sci.48(10), 4597–4607 (2007). [CrossRef] [PubMed]
  34. R. Richa, P. Poignet, and C. Liu, “Three-dimensional motion tracking for beating heart surgery using a thin-plate spline deformable model,” Int. J. Robot. Res.29(2-3), 218–230 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited