OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 7 — Jul. 1, 2013
  • pp: 1214–1228

Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo

Siavash Yousefi, Jia Qin, and Ruikang K. Wang  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 7, pp. 1214-1228 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4122 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a super-resolution spectral estimation technique to quantify microvascular hemodynamics using optical microangiography (OMAG) based on optical coherence tomography (OCT). The proposed OMAG technique uses both amplitude and phase information of the OCT signals which makes it sensitive to the axial and transverse flows. The scanning protocol for the proposed method is identical to three-dimensional ultrahigh sensitive OMAG, and is applicable for in vivo measurements. In contrast to the existing capillary flow quantification methods, the proposed method is less sensitive to tissue motion and does not have aliasing problems due fast flow within large blood vessels. This method is analogous to power Doppler in ultrasonography and estimates the number of red blood cells passing through the beam as opposed to the velocity of the particles. The technique is tested both qualitatively and quantitatively by using OMAG to image microcirculation within mouse ear flap in vivo.

© 2013 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

Original Manuscript: March 19, 2013
Revised Manuscript: June 7, 2013
Manuscript Accepted: June 8, 2013
Published: June 27, 2013

Siavash Yousefi, Jia Qin, and Ruikang K. Wang, "Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo," Biomed. Opt. Express 4, 1214-1228 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  2. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005). [CrossRef]
  3. G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998). [CrossRef] [PubMed]
  4. A. H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett.37(11), 1883–1885 (2012). [CrossRef] [PubMed]
  5. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  6. L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt.15(2), 026011 (2010). [CrossRef] [PubMed]
  7. L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett.36(6), 831–833 (2011). [CrossRef] [PubMed]
  8. K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009). [CrossRef] [PubMed]
  9. C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina32(5), 865–876 (2012). [CrossRef] [PubMed]
  10. P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express2(11), 3109–3118 (2011). [CrossRef] [PubMed]
  11. L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol.145(1), 81–90 (2008). [CrossRef] [PubMed]
  12. C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012). [CrossRef] [PubMed]
  13. P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012). [CrossRef] [PubMed]
  14. G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005). [CrossRef] [PubMed]
  15. M. Imai, H. Iijima, and N. Hanada, “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol.132(1), 81–84 (2001). [CrossRef] [PubMed]
  16. M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996). [PubMed]
  17. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  18. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength,” Opt. Express15(18), 11402–11412 (2007). [CrossRef] [PubMed]
  19. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010). [CrossRef] [PubMed]
  20. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010). [CrossRef] [PubMed]
  21. J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011). [CrossRef] [PubMed]
  22. L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive Optical Microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011). [CrossRef] [PubMed]
  23. S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical microangiography,” IEEE Trans. Biomed. Eng.58(8), 2316–2323 (2011). [CrossRef]
  24. Y. L. Jia and R. K. Wang, “Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice,” J. Neurosci. Methods194(1), 108–115 (2010). [CrossRef] [PubMed]
  25. Z. W. Zhi, Y. R. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express2(5), 1059–1068 (2011). [CrossRef] [PubMed]
  26. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997). [CrossRef] [PubMed]
  27. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000). [CrossRef] [PubMed]
  28. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000). [CrossRef] [PubMed]
  29. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artefacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006). [CrossRef] [PubMed]
  30. G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012). [CrossRef] [PubMed]
  31. J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express13(14), 5234–5239 (2005). [CrossRef] [PubMed]
  32. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007). [CrossRef] [PubMed]
  33. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express20(4), 4710–4725 (2012). [CrossRef] [PubMed]
  34. R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express3(3), 503–521 (2012). [CrossRef] [PubMed]
  35. Y. Wang and R. K. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett.35(21), 3538–3540 (2010). [CrossRef] [PubMed]
  36. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express16(16), 12350–12361 (2008). [CrossRef] [PubMed]
  37. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3(3), 612–629 (2012). [CrossRef] [PubMed]
  38. R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antenn. Propag.34(3), 276–280 (1986). [CrossRef]
  39. S. L. Maple, Jr., Digital Spectral Analysis with Applications (Prentice-Hall, 1987).
  40. J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE57(8), 1408–1418 (1969). [CrossRef]
  41. J. P. Burg, “Maximum-entropy spectral analysis,” in 37th Ann. Int. Meet., Soc. Explor. Geophys., Ph.D. thesis, Oklahoma City, Okla., Oct. 31, 1967 (1967).
  42. R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol.51(12), 3231–3239 (2006). [CrossRef] [PubMed]
  43. C. E. Shannon, “Communication in the presence of noise,” Proc. IRE37(1), 10–21 (1949). [CrossRef]
  44. R. S. C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press, 2007), pp. 422–423.
  45. J. M. Rubin and R. S. Adler, “Power Doppler expands standard color capability,” Diagn. Imaging (San Franc.)15(12), 66–69 (1993). [PubMed]
  46. D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol.26(2), 109–115 (1996). [CrossRef] [PubMed]
  47. D. L. Kellogg., “In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges,” J. Appl. Physiol.100(5), 1709–1718 (2006). [CrossRef] [PubMed]
  48. R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging2012, 9 (2012). [CrossRef] [PubMed]
  49. J. Baun, Vascular Ultrasound: Physics, Instrumentation and Hemodynamics (ProSono Publishing, December 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited