OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 7 — Jul. 1, 2013
  • pp: 995–1005

Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination

Heejin Choi, Elijah Y. S. Yew, Bertan Hallacoglu, Sergio Fantini, Colin J. R. Sheppard, and Peter T. C. So  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 7, pp. 995-1005 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1738 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Although temporally focused wide-field two-photon microscopy (TFM) can perform depth resolved wide field imaging, it cannot avoid the image degradation due to scattering of excitation and emission photons when imaging in a turbid medium. Further, its axial resolution is inferior to standard point-scanning two-photon microscopy. We implemented a structured light illumination for TFM and have shown that it can effectively reject the out-of-focus scattered emission photons improving image contrast. Further, the depth resolution of the improved system is dictated by the spatial frequency of the structure light with the potential of attaining depth resolution better than point-scanning two-photon microscopy.

© 2013 OSA

OCIS Codes
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(110.0113) Imaging systems : Imaging through turbid media
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: April 5, 2013
Revised Manuscript: May 17, 2013
Manuscript Accepted: May 29, 2013
Published: June 3, 2013

Heejin Choi, Elijah Y. S. Yew, Bertan Hallacoglu, Sergio Fantini, Colin J. R. Sheppard, and Peter T. C. So, "Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination," Biomed. Opt. Express 4, 995-1005 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express13(5), 1468–1476 (2005). [CrossRef] [PubMed]
  2. G. H. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express13(6), 2153–2159 (2005). [CrossRef] [PubMed]
  3. A. Vaziri, J. Y. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A.105(51), 20221–20226 (2008). [CrossRef] [PubMed]
  4. O. D. Therrien, B. Aubé, S. Pagès, P. D. Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express2(3), 696–704 (2011). [CrossRef] [PubMed]
  5. H. Choi, D. S. Tzeranis, J. W. Cha, P. Clémenceau, S. J. de Jong, L. K. van Geest, J. H. Moon, I. V. Yannas, and P. T. So, “3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation,” Opt. Express20(24), 26219–26235 (2012). [CrossRef] [PubMed]
  6. B. K. Andrasfalvy, B. V. Zemelman, J. Y. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A.107(26), 11981–11986 (2010). [CrossRef] [PubMed]
  7. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010). [CrossRef] [PubMed]
  8. D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett.35(10), 1602–1604 (2010). [CrossRef] [PubMed]
  9. Y. C. Li, L. C. Cheng, C. Y. Chang, C. H. Lien, P. J. Campagnola, and S. J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express20(17), 19030–19038 (2012). [CrossRef] [PubMed]
  10. E. Papagiakoumou, A. Begue, B. Leshem, O. Schwartz, B. M. Stell, J. Bradley, D. Oron, and V. Emiliani, “Functional patterned multiphoton excitation deep inside scattering tissue,” Nat. Photonics7(4), 274–278 (2013). [CrossRef]
  11. A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express18(19), 19645–19655 (2010). [CrossRef] [PubMed]
  12. H. Dana and S. Shoham, “Numerical evaluation of temporal focusing characteristics in transparent and scattering media,” Opt. Express19(6), 4937–4948 (2011). [CrossRef] [PubMed]
  13. H. Dana, N. Kruger, A. Ellman, and S. Shoham, “Line temporal focusing characteristics in transparent and scattering media,” Opt. Express21(5), 5677–5687 (2013). [CrossRef] [PubMed]
  14. K. H. Kim, C. Buehler, K. Bahlmann, T. Ragan, W. C. A. Lee, E. Nedivi, E. L. Heffer, S. Fantini, and P. T. C. So, “Multifocal multiphoton microscopy based on multianode photomultiplier tubes,” Opt. Express15(18), 11658–11678 (2007). [CrossRef] [PubMed]
  15. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997). [CrossRef] [PubMed]
  16. D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett.33(16), 1819–1821 (2008). [CrossRef] [PubMed]
  17. A. Weigel, D. Schild, and A. Zeug, “Resolution in the ApoTome and the confocal laser scanning microscope: comparison,” J. Biomed. Opt.14(1), 014022 (2009). [CrossRef] [PubMed]
  18. D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt.16(1), 016014 (2011). [CrossRef] [PubMed]
  19. J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt.15(1), 016027 (2010). [CrossRef] [PubMed]
  20. D. Bhattacharya, V. R. Singh, C. Zhi, P. T. C. So, P. Matsudaira, and G. Barbastathis, “Three dimensional HiLo-based structured illumination for a digital scanned laser sheet microscopy (DSLM) in thick tissue imaging,” Opt. Express20(25), 27337–27347 (2012). [CrossRef] [PubMed]
  21. E. Y. S. Yew, H. J. Choi, D. Kim, and P. T. C. So, “Wide-field two-photon microscopy with temporal focusing and HiLo background rejection,” Proc. SPIE7903, 79031O, 79031O-6 (2011). [CrossRef]
  22. L. C. Cheng, C. Y. Chang, W. C. Yen, and S. J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning of thick tissues,” Proc. SPIE8520, 85200N, 85200N-8 (2012). [CrossRef]
  23. J. Michaelson, H. J. Choi, P. So, and H. D. Huang, “Depth-resolved cellular microrheology using HiLo microscopy,” Biomed. Opt. Express3(6), 1241–1255 (2012). [CrossRef] [PubMed]
  24. T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt.17(2), 021105 (2012). [CrossRef] [PubMed]
  25. E. Papagiakoumou, V. de Sars, V. Emiliani, and D. Oron, “Temporal focusing with spatially modulated excitation,” Opt. Express17(7), 5391–5401 (2009). [CrossRef] [PubMed]
  26. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008). [CrossRef] [PubMed]
  27. M. E. Durst, G. H. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express14(25), 12243–12254 (2006). [CrossRef] [PubMed]
  28. P. A. Stokseth, “Properties of a defocused optical system,” J. Opt. Soc. Am.59(10), 1314–1321 (1969). [CrossRef]
  29. D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron39(7), 808–818 (2008). [CrossRef] [PubMed]
  30. C. J. R. Sheppard and M. Gu, “Image formation in two-photon fluorescence microscopy,” Optik (Stuttg.)86, 104–106 (1990).
  31. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  32. D. A. Boas, C. Pitris, and N. Ramanujam, eds., Handbook of Biomedical Optics (CRC Press, 2011), Chap. 5.
  33. C. Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt.8(3), 450–459 (2003). [CrossRef] [PubMed]
  34. P. Sun and Y. Wang, “Measurements of optical parameters of phantom solution and bulk animal tissues in vitro at 650 nm,” Opt. Laser Technol.42(1), 1–7 (2010). [CrossRef]
  35. L. C. Cheng, C. Y. Chang, C. Y. Lin, K. C. Cho, W. C. Yen, N. S. Chang, C. Xu, C. Y. Dong, and S. J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express20(8), 8939–8948 (2012). [CrossRef] [PubMed]
  36. N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods5(2), 197–202 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited