OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 8 — Aug. 1, 2013
  • pp: 1255–1268

Compartment-resolved imaging of cortical functional hyperemia with OCT angiography

Harsha Radhakrishnan and Vivek J. Srinivasan  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 8, pp. 1255-1268 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1904 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical Coherence Tomography (OCT) angiography was applied to image functional hyperemia in different vascular compartments in the rat somatosensory cortex. Dynamic backscattering changes, indicative of changes in dynamic red blood cell (dRBC) content, were used to monitor the hemodynamic response. Three-dimensional movies depicting the microvascular response to neuronal activation were created for the first time. An increase in the attenuation coefficient during activation was identified, and a simple normalization procedure was proposed to correct for it. This procedure was applied to determine compartment-resolved backscattering changes caused by dRBC content changes during functional activation. Increases in dRBC content were observed in all vascular compartments (arterial, arteriolar, capillary, and venular), with the largest responses found in the arterial and arteriolar compartments. dRBC content increased with dilation in arteries but with barely detectable dilation in veins. dRBC content increased in capillaries without significant “all or none” capillary recruitment.

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.0180) Medical optics and biotechnology : Microscopy
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(290.1350) Scattering : Backscattering

ToC Category:
Optical Coherence Tomography

Original Manuscript: March 7, 2013
Revised Manuscript: June 10, 2013
Manuscript Accepted: June 13, 2013
Published: July 2, 2013

Virtual Issues
August 2, 2013 Spotlight on Optics

Harsha Radhakrishnan and Vivek J. Srinivasan, "Compartment-resolved imaging of cortical functional hyperemia with OCT angiography," Biomed. Opt. Express 4, 1255-1268 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. U.S.A.89(12), 5675–5679 (1992). [CrossRef] [PubMed]
  2. S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S.-G. Kim, H. Merkle, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging,” Proc. Natl. Acad. Sci. U.S.A.89(13), 5951–5955 (1992). [CrossRef] [PubMed]
  3. J. B. Mandeville, J. J. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, and B. R. Rosen, “MRI measurement of the temporal evolution of relative CMRO2 during rat forepaw stimulation,” Magn. Reson. Med.42(5), 944–951 (1999). [CrossRef] [PubMed]
  4. C. Martin, Y. Zheng, N. R. Sibson, J. E. Mayhew, and J. Berwick, “Complex spatiotemporal haemodynamic response following sensory stimulation in the awake rat,” Neuroimage66, 1–8 (2013). [PubMed]
  5. M. A. Franceschini, H. Radhakrishnan, K. Thakur, W. Wu, S. Ruvinskaya, S. Carp, and D. A. Boas, “The effect of different anesthetics on neurovascular coupling,” Neuroimage51(4), 1367–1377 (2010). [CrossRef] [PubMed]
  6. J. P. Culver, T. Durduran, C. Cheung, A. G. Yodh, D. Furuya, and J. H. Greenberg, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol.510, 293–297 (2003). [CrossRef] [PubMed]
  7. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40(2), 367–377 (2012). [CrossRef] [PubMed]
  8. E. M. Hillman and S. A. Burgess, “Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography,” Laser Photon Rev3(1-2), 159–179 (2009). [CrossRef] [PubMed]
  9. A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012). [CrossRef] [PubMed]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  11. E. Macé, G. Montaldo, I. Cohen, M. Baulac, M. Fink, and M. Tanter, “Functional ultrasound imaging of the brain,” Nat. Methods8(8), 662–664 (2011). [CrossRef] [PubMed]
  12. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express15(20), 12636–12653 (2007). [CrossRef] [PubMed]
  13. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  14. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Y. Jiang, A. E. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  15. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express16(16), 12350–12361 (2008). [CrossRef] [PubMed]
  16. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009). [CrossRef] [PubMed]
  17. E. M. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage35(1), 89–104 (2007). [CrossRef] [PubMed]
  18. A. Villringer, A. Them, U. Lindauer, K. Einhäupl, and U. Dirnagl, “Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study,” Circ. Res.75(1), 55–62 (1994). [CrossRef] [PubMed]
  19. A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci.27(16), 4452–4459 (2007). [CrossRef] [PubMed]
  20. H. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. Li, “Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography,” Opt. Lett.31(7), 927–929 (2006). [CrossRef] [PubMed]
  21. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18(3), 2477–2494 (2010). [CrossRef] [PubMed]
  22. S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical micro-angiography,” IEEE Trans. Biomed. Eng.58(8), 2316–2323 (2011). [CrossRef] [PubMed]
  23. R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt.13(4), 041309 (2008). [CrossRef] [PubMed]
  24. R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. U.S.A.88(21), 9382–9386 (1991). [CrossRef] [PubMed]
  25. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett.34(20), 3086–3088 (2009). [CrossRef] [PubMed]
  26. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010). [CrossRef] [PubMed]
  27. V. J. Srinivasan, D. N. Atochin, H. Radhakrishnan, J. Y. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. E. Cable, C. Ayata, P. L. Huang, and D. A. Boas, “Optical coherence tomography for the quantitative study of cerebrovascular physiology,” J. Cereb. Blood Flow Metab.31(6), 1339–1345 (2011). [CrossRef] [PubMed]
  28. P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt.16(11), 116020 (2011). [CrossRef] [PubMed]
  29. Y. Mutalifu, L. Holm, C. Ince, E. Theodorsson, and F. Sjöberg, “Multiple different laminar velocity profiles in separate veins in the microvascular network of brain cortex in rats,” Int. J. Clin. Exp. Med.4(1), 10–16 (2011). [PubMed]
  30. N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, “Neurophysiological investigation of the basis of the fMRI signal,” Nature412(6843), 150–157 (2001). [CrossRef] [PubMed]
  31. C. Iadecola, “Neurovascular regulation in the normal brain and in Alzheimer’s disease,” Nat. Rev. Neurosci.5(5), 347–360 (2004). [CrossRef] [PubMed]
  32. M. E. Raichle and M. A. Mintun, “Brain work and brain imaging,” Annu. Rev. Neurosci.29(1), 449–476 (2006). [CrossRef] [PubMed]
  33. E. Hamel, “Cholinergic modulation of the cortical microvascular bed,” Prog. Brain Res.145, 171–178 (2004). [CrossRef] [PubMed]
  34. B. Cauli, X. K. Tong, A. Rancillac, N. Serluca, B. Lambolez, J. Rossier, and E. Hamel, “Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways,” J. Neurosci.24(41), 8940–8949 (2004). [CrossRef] [PubMed]
  35. R. C. Koehler, D. Gebremedhin, and D. R. Harder, “Role of astrocytes in cerebrovascular regulation,” J. Appl. Physiol.100(1), 307–317 (2006). [CrossRef] [PubMed]
  36. B. Stefanovic, E. Hutchinson, V. Yakovleva, V. Schram, J. T. Russell, L. Belluscio, A. P. Koretsky, and A. C. Silva, “Functional reactivity of cerebral capillaries,” J. Cereb. Blood Flow Metab.28(5), 961–972 (2008). [CrossRef] [PubMed]
  37. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3(3), 612–629 (2012). [CrossRef] [PubMed]
  38. P. J. Drew, A. Y. Shih, and D. Kleinfeld, “Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity,” Proc. Natl. Acad. Sci. U.S.A.108(20), 8473–8478 (2011). [CrossRef] [PubMed]
  39. R. Fahraeus and T. Lindqvist, “The viscosity of the blood in narrow capillary tubes,” Am. J. Physiol.96, 562–568 (1931).
  40. A. R. Pries, D. Neuhaus, and P. Gaehtgens, “Blood viscosity in tube flow: dependence on diameter and hematocrit,” Am. J. Physiol.263(6 Pt 2), H1770–H1778 (1992). [PubMed]
  41. A. R. Pries, T. W. Secomb, and P. Gaehtgens, “Biophysical aspects of blood flow in the microvasculature,” Cardiovasc. Res.32(4), 654–667 (1996). [PubMed]
  42. D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett.34(9), 1435–1437 (2009). [CrossRef] [PubMed]
  43. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature324(6095), 361–364 (1986). [CrossRef] [PubMed]
  44. I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci.25(9), 2233–2244 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1846 KB)     
» Media 2: AVI (3119 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited