OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 8 — Aug. 1, 2013
  • pp: 1332–1341

Real-time, continuous, fluorescence sensing in a freely-moving subject with an implanted hybrid VCSEL/CMOS biosensor

Thomas D. O’Sullivan, Roxana T. Heitz, Natesh Parashurama, David B. Barkin, Bruce A. Wooley, Sanjiv S. Gambhir, James S. Harris, and Ofer Levi  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 8, pp. 1332-1341 (2013)
http://dx.doi.org/10.1364/BOE.4.001332


View Full Text Article

Enhanced HTML    Acrobat PDF (1405 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Performance improvements in instrumentation for optical imaging have contributed greatly to molecular imaging in living subjects. In order to advance molecular imaging in freely moving, untethered subjects, we designed a miniature vertical-cavity surface-emitting laser (VCSEL)-based biosensor measuring 1cm3 and weighing 0.7g that accurately detects both fluorophore and tumor-targeted molecular probes in small animals. We integrated a critical enabling component, a complementary metal-oxide semiconductor (CMOS) read-out integrated circuit, which digitized the fluorescence signal to achieve autofluorescence-limited sensitivity. After surgical implantation of the lightweight sensor for two weeks, we obtained continuous and dynamic fluorophore measurements while the subject was un-anesthetized and mobile. The technology demonstrated here represents a critical step in the path toward untethered optical sensing using an integrated optoelectronic implant.

© 2013 OSA

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(130.6010) Integrated optics : Sensors
(140.2020) Lasers and laser optics : Diode lasers
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(230.5160) Optical devices : Photodetectors

ToC Category:
Small Animal Imaging and Veterinary Studies

History
Original Manuscript: March 7, 2013
Revised Manuscript: June 5, 2013
Manuscript Accepted: June 26, 2013
Published: July 15, 2013

Citation
Thomas D. O’Sullivan, Roxana T. Heitz, Natesh Parashurama, David B. Barkin, Bruce A. Wooley, Sanjiv S. Gambhir, James S. Harris, and Ofer Levi, "Real-time, continuous, fluorescence sensing in a freely-moving subject with an implanted hybrid VCSEL/CMOS biosensor," Biomed. Opt. Express 4, 1332-1341 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-8-1332


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. C. Hillman, C. B. Amoozegar, T. Wang, A. F. H. McCaslin, M. B. Bouchard, J. Mansfield, and R. M. Levenson, “In vivo optical imaging and dynamic contrast methods for biomedical research,” Philos Trans A Math Phys Eng Sci369(1955), 4620–4643 (2011). [CrossRef] [PubMed]
  2. M. L. James and S. S. Gambhir, “A molecular imaging primer: modalities, imaging agents, and applications,” Physiol. Rev.92(2), 897–965 (2012). [CrossRef] [PubMed]
  3. M. A. Pysz, S. S. Gambhir, and J. K. Willmann, “Molecular imaging: current status and emerging strategies,” Clin. Radiol.65(7), 500–516 (2010). [CrossRef] [PubMed]
  4. M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A Low-Light CMOS Contact Imager With an Emission Filter for Biosensing Applications,” IEEE Trans. Biomed. Circuits Sys.2(3), 193–203 (2008). [CrossRef]
  5. B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods5(11), 935–938 (2008). [CrossRef] [PubMed]
  6. T. O’Sullivan, E. A. Munro, N. Parashurama, C. Conca, S. S. Gambhir, J. S. Harris, and O. Levi, “Implantable semiconductor biosensor for continuous in vivo sensing of far-red fluorescent molecules,” Opt. Express18(12), 12513–12525 (2010). [CrossRef] [PubMed]
  7. P. Valdastri, E. Susilo, T. Förster, C. Strohhöfer, A. Menciassi, and P. Dario, “Wireless implantable electronic platform for chronic fluorescent-based biosensors,” IEEE Trans. Biomed. Eng.58(6), 1846–1854 (2011). [CrossRef] [PubMed]
  8. N. Parashurama, T. D. O’Sullivan, A. De La Zerda, P. El Kalassi, S. Cho, H. Liu, R. Teed, H. Levy, J. Rosenberg, Z. Cheng, O. Levi, J. S. Harris, and S. S. Gambhir, “Continuous sensing of tumor-targeted molecular probes with a vertical cavity surface emitting laser-based biosensor,” J. Biomed. Opt.17(11), 117004 (2012). [CrossRef] [PubMed]
  9. K. Murari, R. Etienne-Cummings, G. Cauwenberghs, and N. Thakor, “An integrated imaging microscope for untethered cortical imaging in freely-moving animals,” in Engineering in Medicine and Biology Society (EMBC),2010Annual International Conference of the IEEE, 2010), 5795–5798. [CrossRef]
  10. K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods8(10), 871–878 (2011). [CrossRef] [PubMed]
  11. T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE Opt. Fiber and Sensors for Medical Diagnostics and Treatment Applications IX 717309 (2009).
  12. M. Patterson, B. Wilson, and D. Wyman, “The propagation of optical radiation in tissue. II: Optical properties of tissues and resulting fluence distributions,” Lasers Med. Sci.6(4), 379–390 (1991). [CrossRef]
  13. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev.17(5), 545–580 (2003). [CrossRef] [PubMed]
  14. G. Vasilescu, Electronic Noise and Interfering Signals: Principles and Applications (Springer, Berlin, 2005).
  15. R. T. Heitz, D. B. Barkin, T. D. O'Sullivan, N. Parashurama, S. S. Gambhir, and B. A. Wooley, “A low noise current readout architecture for fluorescence detection in living subjects,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC),2011IEEE International, 2011), 308–310.
  16. H. Ou and K. K. Chin, “Theory of gated multicycle integration (GMCI) for repetitive imaging of focal plane array,” IEEE Trans. Circuits Syst. II: Analog Digital Sig. Proc.50(7), 378–383 (2003). [CrossRef]
  17. E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt.13(4), 041303 (2008). [CrossRef] [PubMed]
  18. S. P. Nichols, A. Koh, W. L. Storm, J. H. Shin, and M. H. Schoenfisch, “Biocompatible materials for continuous glucose monitoring devices,” Chem. Rev.113(4), 2528–2549 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited