OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 8 — Aug. 1, 2013
  • pp: 1342–1350

Miniature real-time intraoperative forward-imaging optical coherence tomography probe

Karen M. Joos and Jin-Hui Shen  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 8, pp. 1342-1350 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1377 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical coherence tomography (OCT) has a tremendous global impact upon the ability to diagnose, treat, and monitor eye diseases. A miniature 25-gauge forward-imaging OCT probe with a disposable tip was developed for real-time intraoperative ocular imaging of posterior pole and peripheral structures to improve vitreoretinal surgery. The scanning range was 2 mm when the probe tip was held 3-4 mm from the tissue surface. The axial resolution was 4-6 µm and the lateral resolution was 25-35 µm. The probe was used to image cellophane tape and multiple ocular structures.

© 2013 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

Original Manuscript: June 5, 2013
Revised Manuscript: July 4, 2013
Manuscript Accepted: July 8, 2013
Published: July 16, 2013

Karen M. Joos and Jin-Hui Shen, "Miniature real-time intraoperative forward-imaging optical coherence tomography probe," Biomed. Opt. Express 4, 1342-1350 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Spectral domain second-harmonic optical coherence tomography,” Opt. Lett.30(18), 2391–2393 (2005). [CrossRef] [PubMed]
  2. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004). [CrossRef] [PubMed]
  3. Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett.32(20), 2918–2920 (2007). [CrossRef] [PubMed]
  4. M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina28(2), 298–308 (2008). [CrossRef] [PubMed]
  5. G. Savini, M. Zanini, and P. Barboni, “Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by Stratus OCT,” J. Glaucoma15(4), 336–340 (2006). [CrossRef] [PubMed]
  6. A. Almony, E. Nudleman, G. K. Shah, K. J. Blinder, D. B. Eliott, R. A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina32(5), 877–891 (2012). [CrossRef] [PubMed]
  7. C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print). [PubMed]
  8. A. M. Rollins, R. Ung-Arunyawee, A. Chak, R. C. Wong, K. Kobayashi, M. V. Sivak, and J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett.24(19), 1358–1360 (1999). [CrossRef] [PubMed]
  9. A. M. Klein, M. C. Pierce, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. Shishkov, and J. F. de Boer, “Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience,” Ann. Otol. Rhinol. Laryngol.115(4), 277–284 (2006). [PubMed]
  10. B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005). [CrossRef] [PubMed]
  11. A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Prac. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006). [CrossRef] [PubMed]
  12. M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol.48(1), 81–88 (2006). [CrossRef] [PubMed]
  13. M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods176(2), 85–95 (2009). [CrossRef] [PubMed]
  14. Y. T. Pan, T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography,” Opt. Lett.28(24), 2485–2487 (2003). [CrossRef] [PubMed]
  15. A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.10(3), 636–642 (2004). [CrossRef]
  16. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett.22(21), 1618–1620 (1997). [CrossRef] [PubMed]
  17. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett.29(15), 1763–1765 (2004). [CrossRef] [PubMed]
  18. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett.30(14), 1803–1805 (2005). [CrossRef] [PubMed]
  19. J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett.31(9), 1265–1267 (2006). [CrossRef] [PubMed]
  20. N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. D. Yang, “Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett.33(7), 657–659 (2008). [CrossRef] [PubMed]
  21. C. Sun, K. K. C. Lee, B. Vuong, M. D. Cusimano, A. Brukson, A. Mauro, N. Munce, B. K. Courtney, B. A. Standish, and V. X. D. Yang, “Intraoperative handheld optical coherence tomography forward-viewing probe: physical performance and preliminary animal imaging,” Biomed. Opt. Express3(6), 1404–1412 (2012). [CrossRef] [PubMed]
  22. S. Han, M.V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt.13(2), 020505 (2008).
  23. N.V. Iftimia, B.E. Bouma, M.B. Pitman, B. Goldberg, J. Bressner, and G.J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum.76(6), 064301 (2005).
  24. S. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. N. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012), pp. 948–951. [CrossRef]
  25. Y. Huang, X. Liu, C. Song, and J. U. Kang, “Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention,” Biomed. Opt. Express3(12), 3105–3118 (2012). [CrossRef] [PubMed]
  26. D. Wright, P. Greve, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor: an international standardization approach,” Opt. Quantum Electron.24(9), S993–S1000 (1992). [CrossRef]
  27. P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol.251(1), 213–220 (2013). [CrossRef] [PubMed]
  28. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci.52(6), 3153–3159 (2011). [CrossRef] [PubMed]
  29. P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S85–S94 (2011). [CrossRef] [PubMed]
  30. R. Ray, D. E. Barañano, J. A. Fortun, B. J. Schwent, B. E. Cribbs, C. S. Bergstrom, G. B. Hubbard, and S. K. Srivastava, “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology118(11), 2212–2217 (2011). [CrossRef] [PubMed]
  31. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina33(1), 232–236 (2013). [CrossRef] [PubMed]
  32. P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013). [CrossRef] [PubMed]
  33. J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina33(7), 1428–1434 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited