OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 8 — Aug. 1, 2013
  • pp: 1390–1400

Subcellular localization-dependent changes in EGFP fluorescence lifetime measured by time-resolved flow cytometry

Ali Vaziri Gohar, Ruofan Cao, Patrick Jenkins, Wenyan Li, Jessica P. Houston, and Kevin D. Houston  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 8, pp. 1390-1400 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Intracellular protein transport and localization to subcellular regions are processes necessary for normal protein function. Fluorescent proteins can be fused to proteins of interest to track movement and determine localization within a cell. Currently, fluorescence microscopy combined with image processing is most often used to study protein movement and subcellular localization. In this contribution we evaluate a high-throughput time-resolved flow cytometry approach to correlate intracellular localization of human LC3 protein with the fluorescence lifetime of enhanced green fluorescent protein (EGFP). Subcellular LC3 localization to autophagosomes is a marker of the cellular process called autophagy. In breast cancer cells expressing native EGFP and EGFP-LC3 fusion proteins, we measured the fluorescence intensity and lifetime of (i) diffuse EGFP (ii) punctate EGFP-LC3 and (iii) diffuse EGFP-ΔLC3 after amino acid starvation to induce autophagy-dependent LC3 localization. We verify EGFP-LC3 localization with low-throughput confocal microscopy and compare to fluorescence intensity measured by standard flow cytometry. Our results demonstrate that time-resolved flow cytometry can be correlated to subcellular localization of EGFP fusion proteins by measuring changes in fluorescence lifetime.

© 2013 OSA

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(260.2510) Physical optics : Fluorescence
(140.3518) Lasers and laser optics : Lasers, frequency modulated

ToC Category:
Cell Studies

Original Manuscript: June 10, 2013
Revised Manuscript: July 11, 2013
Manuscript Accepted: July 15, 2013
Published: July 19, 2013

Ali Vaziri Gohar, Ruofan Cao, Patrick Jenkins, Wenyan Li, Jessica P. Houston, and Kevin D. Houston, "Subcellular localization-dependent changes in EGFP fluorescence lifetime measured by time-resolved flow cytometry," Biomed. Opt. Express 4, 1390-1400 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Hung and W. Link, “Protein localization in disease and therapy,” J. Cell Sci.124(20), 3381–3392 (2011). [CrossRef] [PubMed]
  2. E. R. Tkaczyk and A. H. Tkaczyk, “Multiphoton flow cytometry strategies and applications,” Cytometry A79(10), 775–788 (2011). [CrossRef] [PubMed]
  3. J. R. Swedlow, “Innovation in biological microscopy: current status and future directions,” Bioessays34(5), 333–340 (2012). [CrossRef] [PubMed]
  4. M. Zhao, P. G. Schiro, J. S. Kuo, K. M. Koehler, D. E. Sabath, V. Popov, Q. Feng, and D. T. Chiu, “An automated high-throughput counting method for screening circulating tumor cells in peripheral blood,” Anal. Chem.85(4), 2465–2471 (2013). [CrossRef] [PubMed]
  5. H. J. Yoo, J. Park, and T. H. Yoon, “High throughput cell cycle analysis using microfluidic image cytometry (μFIC),” Cytometry A83(4), 356–362 (2013). [CrossRef] [PubMed]
  6. R. F. Murphy, “Communicating subcellular distributions,” Cytometry A77(7), 686–692 (2010). [CrossRef] [PubMed]
  7. N. S. Barteneva, E. Fasler-Kan, and I. A. Vorobjev, “Imaging flow cytometry: coping with heterogeneity in biological systems,” J. Histochem. Cytochem.60(10), 723–733 (2012). [PubMed]
  8. G. S. Elliott, “Moving pictures: imaging flow cytometry for drug development,” Comb. Chem. High Throughput Screen.12(9), 849–859 (2009). [CrossRef] [PubMed]
  9. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).
  10. B. G. Pinsky, J. J. Ladasky, J. R. Lakowicz, K. Berndt, and R. A. Hoffman, “Phase-resolved fluorescence lifetime measurements for flow cytometry,” Cytometry14(2), 123–135 (1993). [CrossRef] [PubMed]
  11. J. A. Steinkamp and H. A. Crissman, “Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry,” Cytometry14(2), 210–216 (1993). [CrossRef] [PubMed]
  12. J. A. Steinkamp and J. F. Keij, “Fluorescence intensity and lifetime measurement of free and particle-bound fluorophore in a sample stream by phase-sensitive flow cytometry,” Rev. Sci. Instrum.70(12), 4682–4688 (1999). [CrossRef]
  13. J. P. Houston, M. A. Naivar, P. Jenkins, and J. P. Freyer, “Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry,” Cytometry A77(9), 861–872 (2010). [CrossRef] [PubMed]
  14. J. P. Houston, M. A. Naivar, and J. P. Freyer, “Capture of fluorescence decay times by flow cytometry,” Curr. Protoc. Cytom. (2012). [CrossRef]
  15. A. Esposito, H. C. Gerritsen, and F. S. Wouters, “Fluorescence lifetime heterogeneity resolution in the frequency domain by lifetime moments analysis,” Biophys. J.89(6), 4286–4299 (2005). [CrossRef] [PubMed]
  16. V. Calleja, S. M. Ameer-Beg, B. Vojnovic, R. Woscholski, J. Downward, and B. Larijani, “Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy,” Biochem. J.372(1), 33–40 (2003). [CrossRef] [PubMed]
  17. B. Seefeldt, R. Kasper, T. Seidel, P. Tinnefeld, K. J. Dietz, M. Heilemann, and M. Sauer, “Fluorescent proteins for single-molecule fluorescence applications,” J Biophotonics1(1), 74–82 (2008). [CrossRef] [PubMed]
  18. D. B. Munafó and M. I. Colombo, “A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation,” J. Cell Sci.114(Pt 20), 3619–3629 (2001). [PubMed]
  19. E. A. Corcelle, P. Puustinen, and M. Jäättelä, “Apoptosis and autophagy: Targeting autophagy signalling in cancer cells -‘trick or treats’?” FEBS J.276(21), 6084–6096 (2009). [CrossRef] [PubMed]
  20. S. Kimura, T. Noda, and T. Yoshimori, “Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3,” Autophagy3(5), 452–460 (2007). [PubMed]
  21. N. Mizushima, T. Yoshimori, and B. Levine, “Methods in Mammalian Autophagy Research,” Cell140(3), 313–326 (2010). [CrossRef] [PubMed]
  22. E. T. W. Bampton, C. G. Goemans, D. Niranjan, N. Mizushima, and A. M. Tolkovsky, “The dynamics of autophagy visualized in live cells - From autophagosome formation to fusion with endo/lysosomes,” Autophagy1(1), 23–37 (2005). [CrossRef] [PubMed]
  23. Y. Kabeya, N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako, T. Noda, E. Kominami, Y. Ohsumi, and T. Yoshimori, “LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing,” EMBO J.19(21), 5720–5728 (2000). [CrossRef] [PubMed]
  24. I. Tanida, T. Yamaji, T. Ueno, S. Ishiura, E. Kominami, and K. Hanada, “Consideration about negative controls for LC3 and expression vectors for four colored fluorescent protein-LC3 negative controls,” Autophagy4(1), 131–134 (2008). [PubMed]
  25. I. Tanida, T. Ueno, and E. Kominami, “Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met(121) to expose Gly120 for lipidation and targeting to autophagosomal membranes,” J. Biol. Chem.279(46), 47704–47710 (2004). [CrossRef] [PubMed]
  26. P. Jenkins, M. A. Naivar, J. P. Freyer, A. Arteaga, and J. P. Houston, “Flow Cytometric Separation of Spectrally Overlapping Fluorophores Using Multifrequency Fluorescence Lifetime Analysis,” (International Society for Optics and Photonics, San Francisco, CA, 2011).
  27. M. A. Naivar, J. D. Parson, M. E. Wilder, R. C. Habbersett, B. S. Edwards, L. Sklar, J. P. Nolan, S. W. Graves, J. C. Martin, J. H. Jett, and J. P. Freyer, “Open, reconfigurable cytometric acquisition system: ORCAS,” Cytometry A71(11), 915–924 (2007). [CrossRef] [PubMed]
  28. A. Kuma, M. Matsui, and N. Mizushima, “LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization,” Autophagy3(4), 323–328 (2007). [PubMed]
  29. A. R. Kristensen, S. Schandorff, M. Høyer-Hansen, M. O. Nielsen, M. Jäättelä, J. Dengjel, and J. S. Andersen, “Ordered organelle degradation during starvation-induced autophagy,” Mol. Cell. Proteomics7(12), 2419–2428 (2008). [CrossRef] [PubMed]
  30. K. Suhling, J. Siegel, D. Phillips, P. M. French, S. Lévêque-Fort, S. E. Webb, and D. M. Davis, “Imaging the environment of green fluorescent protein,” Biophys. J.83(6), 3589–3595 (2002). [CrossRef] [PubMed]
  31. B. Treanor, P. M. Lanigan, K. Suhling, T. Schreiber, I. Munro, M. A. Neil, D. Phillips, D. M. Davis, and P. M. French, “Imaging fluorescence lifetime heterogeneity applied to GFP-tagged MHC protein at an immunological synapse,” J. Microsc.217(1), 36–43 (2005). [CrossRef] [PubMed]
  32. A. H. Clayton, Q. S. Hanley, and P. J. Verveer, “Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data,” J. Microsc.213(1), 1–5 (2004). [CrossRef] [PubMed]
  33. A. Pliss, L. Zhao, T. Y. Ohulchanskyy, J. Qu, and P. N. Prasad, “Fluorescence lifetime of fluorescent proteins as an intracellular environment probe sensing the cell cycle progression,” ACS Chem. Biol.7(8), 1385–1392 (2012). [CrossRef] [PubMed]
  34. T. Ito, S. Oshita, T. Nakabayashi, F. Sun, M. Kinjo, and N. Ohta, “Fluorescence lifetime images of green fluorescent protein in HeLa cells during TNF-alpha induced apoptosis,” Photochem. Photobiol. Sci.8(6), 763–767 (2009). [CrossRef] [PubMed]
  35. T. Nakabayashi, H. P. Wang, M. Kinjo, and N. Ohta, “Application of fluorescence lifetime imaging of enhanced green fluorescent protein to intracellular pH measurements,” Photochem. Photobiol. Sci.7(6), 668–670 (2008). [CrossRef] [PubMed]
  36. T. Nakabayashi, I. Nagao, M. Kinjo, Y. Aoki, M. Tanaka, and N. Ohta, “Stress-induced environmental changes in a single cell as revealed by fluorescence lifetime imaging,” Photochem. Photobiol. Sci.7(6), 671–674 (2008). [CrossRef] [PubMed]
  37. K. Elgass, K. Caesar, F. Schleifenbaum, Y. D. Stierhof, A. J. Meixner, and K. Harter, “Novel application of fluorescence lifetime and fluorescence microscopy enables quantitative access to subcellular dynamics in plant cells,” PLoS ONE4(5), e5716 (2009). [CrossRef] [PubMed]
  38. R. Pepperkok, A. Squire, S. Geley, and P. I. Bastiaens, “Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy,” Curr. Biol.9(5), 269–274 (1999). [CrossRef] [PubMed]
  39. H. H. Cui, J. G. Valdez, J. A. Steinkamp, and H. A. Crissman, “Fluorescence lifetime-based discrimination and quantification of cellular DNA and RNA with phase-sensitive flow cytometry,” Cytometry A52(1), 46–55 (2003). [CrossRef] [PubMed]
  40. J. A. Steinkamp, “Phase-sensitive detection methods for resolving fluorescence emission signals and directly quantifying lifetime,” Methods Cell Biol.42(Pt B), 627–640 (1994). [CrossRef] [PubMed]
  41. R. Cao, V. Pankayatselvan, and J. P. Houston, “Cytometric sorting based on the fluorescence lifetime of spectrally overlapping signals,” Opt. Express21(12), 14816–14831 (2013). [CrossRef] [PubMed]
  42. N. Mizushima, “Methods for monitoring autophagy,” Int. J. Biochem. Cell Biol.36(12), 2491–2502 (2004). [CrossRef] [PubMed]
  43. E. Shvets and Z. Elazar, “Flow cytometric analysis of autophagy in living mammalian cells,” Methods Enzymol.452, 131–141 (2009). [CrossRef] [PubMed]
  44. P. Hundeshagen, A. Hamacher-Brady, R. Eils, and N. R. Brady, “Concurrent detection of autolysosome formation and lysosomal degradation by flow cytometry in a high-content screen for inducers of autophagy,” BMC Biol.9(1), 38 (2011). [CrossRef] [PubMed]
  45. J. Liang, J. Zubovitz, T. Petrocelli, R. Kotchetkov, M. K. Connor, K. Han, J. H. Lee, S. Ciarallo, C. Catzavelos, R. Beniston, E. Franssen, and J. M. Slingerland, “PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest,” Nat. Med.8(10), 1153–1160 (2002). [CrossRef] [PubMed]
  46. I. M. Chu, L. Hengst, and J. M. Slingerland, “The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy,” Nat. Rev. Cancer8(4), 253–267 (2008). [CrossRef] [PubMed]
  47. R. Mathew and E. White, “Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night,” Curr. Opin. Genet. Dev.21(1), 113–119 (2011). [CrossRef] [PubMed]
  48. F. Cecconi and B. Levine, “The role of autophagy in mammalian development: cell makeover rather than cell death,” Dev. Cell15(3), 344–357 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited