OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 8 — Aug. 1, 2013
  • pp: 1401–1412

Method of detecting tissue contact for fiber-optic probes to automate data acquisition without hardware modification

Sarah Ruderman, Scott Mueller, Andrew Gomes, Jeremy Rogers, and Vadim Backman  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 8, pp. 1401-1412 (2013)
http://dx.doi.org/10.1364/BOE.4.001401


View Full Text Article

Acrobat PDF (923 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel algorithm to detect contact with tissue and automate data acquisition. Contact fiber-optic probe systems are useful in noninvasive applications and real-time analysis of tissue properties. However, applications of these technologies are limited to procedures with visualization to ensure probe-tissue contact and individual user techniques can introduce variability. The software design exploits the system previously designed by our group as an optical method to automatically detect tissue contact and trigger acquisition. This method detected tissue contact with 91% accuracy, detected removal from tissue with 83% accuracy and reduced user variability by > 8%. Without the need for additional hardware, this software algorithm can easily integrate into any fiber-optic system and expands applications where visualization is difficult.

© 2013 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(120.1880) Instrumentation, measurement, and metrology : Detection
(170.1610) Medical optics and biotechnology : Clinical applications
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Clinical Instrumentation

History
Original Manuscript: June 13, 2013
Revised Manuscript: July 15, 2013
Manuscript Accepted: July 17, 2013
Published: July 23, 2013

Virtual Issues
Bio-Optics: Design and Applications (2013) Biomedical Optics Express

Citation
Sarah Ruderman, Scott Mueller, Andrew Gomes, Jeremy Rogers, and Vadim Backman, "Method of detecting tissue contact for fiber-optic probes to automate data acquisition without hardware modification," Biomed. Opt. Express 4, 1401-1412 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-8-1401


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Keshtgar, D. Chicken, M. Austwick, S. Somasundaram, C. Mosse, Y. Zhu, I. Bigio, and S. Bown, “Optical scanning for rapid intraoperative diagnosis of sentinel node metastases in breast cancer,” Brit. J. Surg.97, 1232–1239 (2010). [CrossRef] [PubMed]
  2. R. L. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol.50, 2573 (2005). [CrossRef] [PubMed]
  3. J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In-vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt.48, D26–D35 (2009). [CrossRef]
  4. Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol.6, 37–41 (2012). [CrossRef]
  5. N. Thekkek, S. Anandasabapathy, and R. Richards-Kortum, “Optical molecular imaging for detection of barretts associated neoplasia,” World J. Gastroentero.17, 53 (2011). [CrossRef]
  6. H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology135, 1069–1078 (2008). [CrossRef] [PubMed]
  7. L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt.16, 011012 (2011). [CrossRef] [PubMed]
  8. Y. Ti and W. C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express16, 4250–4262 (2008). [CrossRef] [PubMed]
  9. V. T.C. Chang, D. Merisier, B. Yu, D. K. Walmer, and N. Ramanujam, “Towards a field-compatible optical spectroscopic device for cervical cancer screening in resource-limited settings: effects of calibration and pressure,” Opt. Express19, 17908–17924 (2011). [CrossRef] [PubMed]
  10. R. Reif, M. S. Amorosino, K. W. Calabro, O. AAmar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt.13, 010502 (2008). [CrossRef] [PubMed]
  11. S. Ruderman, A. J. Gomes, V. Stoyneva, J. D. Rogers, A. J. Fought, B. D. Jovanovic, and V. Backman, “Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements,” Biomed. Opt. Express1, 489 (2010). [CrossRef]
  12. M. Lu, J. Xiong, and T. Cui, “A flexible tri-axis contact force sensor for tubular medical device applications,” J. Micromech. Microeng.21, 035004 (2011). [CrossRef]
  13. K. Yokoyama, H. Nakagawa, D. C. Shah, H. Lambert, G. Leo, N. Aeby, A. Ikeda, J. V. Pitha, T. Sharma, R. Lazzara, and , “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombusclinical perspective,” Circ. Arrhythm. Electrophysiol.1, 354–362 (2008). [CrossRef]
  14. A. Chouinard, “Linear gap displacement transducer sheds light on proximity sensing,” Sensors Mag.18, 18 (2001).
  15. T. Y. Lin, P. C. P. Chao, W. D. Chen, and C. H. Tsai, “A novel 3-d optical proximity sensor panel and its readout circuit,” IEEE Sensors.108–113 (2010).
  16. R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater.9, 929–937 (2010). [CrossRef] [PubMed]
  17. L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, and C. Winnewisser, “Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer leds,” Org. Electron.7, 114–120 (2006). [CrossRef]
  18. E. Cibula and D. Donlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” App. Opt.44, 2736–2744 (2005). [CrossRef]
  19. A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, “Effect of probe pressure on cervical fluorescence spectroscopy measurements,” J. Biomed. Opt.9, 523–533 (2004). [CrossRef] [PubMed]
  20. V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in-vivo with a polarization-gating probe,” App. Opt.47, 6046–6057 (2008). [CrossRef]
  21. E. Rodriguez-Diaz, C. S. Huang, A. Sharma, L. I. Jepeal, I. J. Bigio, and S. K. Singh, “Optical sensing of field carcinogenesis in colonic mucosa using elastic-scattering spectroscopy,” Gastroenterology140, S–751 (2011).
  22. H. K. Roy, N. N. Mutyal, A. Radosevich, S. Bajaj, J. Van Dam, V. J. Konda, J. D. Rogers, S. Upadhye, M. J. Goldberg, and V. Backman, “Development and clinical performance of a novel low coherence enhanced backscattering spectroscopy (lebs) fiberoptic probe for duodenal sensing of pancreatic cancer risk,” Gastroenterology142, S–207 (2012).
  23. J. M. Yamal, D. D. Cox, E. N. Atkinson, C. MacAulay, R. Price, and M. Follen, “Repeatability of tissue fluorescence measurements for the detection of cervical intraepithelial neoplasia,” Biomed. Opt. Express1, 641 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited