OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 8 — Aug. 1, 2013
  • pp: 1422–1433

Analytical optimization of the ablation efficiency at normal and non-normal incidence for generic super Gaussian beam profiles

Samuel Arba-Mosquera and Shwetabh Verma  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 8, pp. 1422-1433 (2013)
http://dx.doi.org/10.1364/BOE.4.001422


View Full Text Article

Enhanced HTML    Acrobat PDF (1143 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We suggest a general method to determine the optimum laser parameters for maximizing the ablation efficiency for different materials (in particular human cornea) at different incidence angles. The model is comprehensive and incorporates laser beam characteristics and ablative spot properties. The model further provides a method to convert energy fluctuations during ablation to equivalent ablation deviations in the cornea. The proposed model can be used for calibration, verification and validation purposes of laser systems used for ablation processes at relatively low cost and would directly improve the quality of results.

© 2013 OSA

OCIS Codes
(170.1020) Medical optics and biotechnology : Ablation of tissue
(140.3295) Lasers and laser optics : Laser beam characterization
(140.3425) Lasers and laser optics : Laser stabilization
(330.7335) Vision, color, and visual optics : Visual optics, refractive surgery

ToC Category:
Laser-Tissue Interactions

History
Original Manuscript: June 11, 2013
Revised Manuscript: July 11, 2013
Manuscript Accepted: July 11, 2013
Published: July 24, 2013

Virtual Issues
Bio-Optics: Design and Applications (2013) Biomedical Optics Express

Citation
Samuel Arba-Mosquera and Shwetabh Verma, "Analytical optimization of the ablation efficiency at normal and non-normal incidence for generic super Gaussian beam profiles," Biomed. Opt. Express 4, 1422-1433 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-8-1422


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. G. Pallikaris and D. S. Siganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia,” J. Refract. Corneal Surg.10(5), 498–510 (1994). [PubMed]
  2. K. Ditzen, H. Huschka, and S. Pieger, “Laser in situ keratomileusis for hyperopia,” J. Cataract Refract. Surg.24(1), 42–47 (1998). [CrossRef] [PubMed]
  3. M. A. el Danasoury, G. O. Waring, A. el Maghraby, and K. Mehrez, “Excimer laser in situ keratomileusis to correct compound myopic astigmatism,” J. Refract. Surg.13(6), 511–520 (1997). [PubMed]
  4. S. Arba-Mosquera and M. Shraiki, “Analysis of the PMMA and cornea temperature rise during excimer laser ablation,” J. Mod. Opt.57(5), 400–407 (2010). [CrossRef]
  5. S. Arba-Mosquera and N. Triefenbach, “Analysis of the cornea-to-PMMA ablation efficiency rate,” J. Mod. Opt.59(10), 930–941 (2012). [CrossRef]
  6. C. B. O’Donnell, J. Kemner, and F. E. O’Donnell., “Ablation smoothness as a function of excimer laser delivery system,” J. Cataract Refract. Surg.22(6), 682–685 (1996). [CrossRef] [PubMed]
  7. B. Müller, T. Boeck, and C. Hartmann, “Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy,” J. Cataract Refract. Surg.30(2), 464–470 (2004). [CrossRef] [PubMed]
  8. M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001). [CrossRef] [PubMed]
  9. M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, “Aberration-sensing and wavefront-guided laser in situ keratomileusis: Management of decentered ablation,” J. Refract. Surg.18(4), 418–429 (2002). [PubMed]
  10. N. M. Taylor, R. H. Eikelboom, P. P. van Sarloos, and P. G. Reid, “Determining the accuracy of an eye tracking system for laser refractive surgery,” J. Refract. Surg.16(5), S643–S646 (2000). [PubMed]
  11. M. Bueeler, M. Mrochen, and T. Seiler, “Effect of spot size, ablation depth, and eye-tracker latency on the optical outcome of corneal laser surgery with a scanning spot laser,” In Ophthalmic Technologies XIII SPIE, 4951, 150-160 (2003).
  12. D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, “The effect of corneal flap on optical aberrations,” Am. J. Ophthalmol.138(2), 190–193 (2004). [CrossRef] [PubMed]
  13. M. Mrochen and T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg.17(5), S584–S587 (2001). [PubMed]
  14. P. S. Hersh, K. Fry, and J. W. Blaker, “Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology,” J. Cataract Refract. Surg.29(11), 2096–2104 (2003). [CrossRef] [PubMed]
  15. J. R. Jimenez, R. G. Anera, L. J. Barco, and E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett.81(8), 1521–1523 (2002). [CrossRef]
  16. R. G. Anera, J. R. Jiménez, L. Jiménez del Barco, and E. Hita, “Changes in corneal asphericity after laser refractive surgery, including reflection losses and non-normal incidence upon the anterior cornea,” Opt. Lett.28(6), 417–419 (2003). [CrossRef] [PubMed]
  17. D. Cano, S. Barbero, and S. Marcos, “Comparison of real and computer-simulated outcomes of LASIK refractive surgery,” J. Opt. Soc. Am. A21(6), 926–936 (2004). [CrossRef] [PubMed]
  18. J. R. Jiménez, F. Rodríguez-Marín, R. G. Anera, and L. Jiménez Del Barco, “Deviations of Lambert-Beer’s law affect corneal refractive parameters after refractive surgery,” Opt. Express14(12), 5411–5417 (2006). [CrossRef] [PubMed]
  19. C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, “Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape,” Opt. Express14(13), 6142–6156 (2006). [CrossRef] [PubMed]
  20. C. Roberts, “Biomechanics of the cornea and wavefront-guided laser refractive surgery,” J. Refract. Surg.18(5), S589–S592 (2002). [PubMed]
  21. D. Huang, M. Tang, and R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol.135(3), 267–278 (2003). [CrossRef] [PubMed]
  22. C. Roberts, “Biomechanical customization: The next generation of laser refractive surgery,” J. Cataract Refract. Surg.31(1), 2–5 (2005). [CrossRef] [PubMed]
  23. C. R. Munnerlyn, S. J. Koons, and J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg.14(1), 46–52 (1988). [CrossRef] [PubMed]
  24. G. Yoon, S. Macrae, D. R. Williams, and I. G. Cox, “Causes of spherical aberration induced by laser refractive surgery,” J. Cataract Refract. Surg.31(1), 127–135 (2005). [CrossRef] [PubMed]
  25. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003). [CrossRef] [PubMed]
  26. S. Arba-Mosquera and D. de Ortueta, “Geometrical analysis of the loss of ablation efficiency at non-normal incidence,” Opt. Express16(6), 3877–3895 (2008). [CrossRef] [PubMed]
  27. G. H. Pettit and M. N. Ediger, “Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation,” Appl. Opt.35(19), 3386–3391 (1996). [CrossRef] [PubMed]
  28. D. N. Nikogosyan and H. Gorner, “Laser-induced photodecomposition of amino acids and peptides: extrapolation to Corneal Collagen,” IEEE J. Sel. Top. Quantum Electron.5(4), 1107–1115 (1999). [CrossRef]
  29. B. T. Fisher and D. W. Hahn, “Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser,” J. Opt. Soc. Am. A24(2), 265–277 (2007). [CrossRef] [PubMed]
  30. H. J. Huebscher, U. Genth, and T. Seiler, “Determination of excimer laser ablation rate of the human cornea using in vivo Scheimpflug videography,” Invest. Ophthalmol. Vis. Sci.37(1), 42–46 (1996). [PubMed]
  31. M. Mrochen, V. Semshichen, R. H. Funk, and T. Seiler, “Limitations of erbium:YAG laser photorefractive keratectomy,” J. Refract. Surg.16(1), 51–59 (2000). [PubMed]
  32. G. H. Pettit, “The ideal excimer beam for refractive surgery,” J. Refract. Surg.22(9), S969–S972 (2006). [PubMed]
  33. B. Neuenschwander, “High throughput structuring: basics, limitations and needs,” Bern University of Applied Sciences, Engineering and Information Technology, Laser Surface Engineering.
  34. D. Huang and M. Arif, “Spot size and quality of scanning laser correction of higher order wavefront aberrations,” J. Refract. Surg.17(5), S588–S591 (2001). [PubMed]
  35. A. Guirao, D. R. Williams, and S. M. MacRae, “Effect of beam size on the expected benefit of customized laser refractive surgery,” J. Refract. Surg.19(1), 15–23 (2003). [PubMed]
  36. G. H. Pettit, “The Alcon/Summit/Autonomous perspective on fixed vs. variable spot ablation,” J. Refract. Surg.17(5), S592–S593 (2001). [PubMed]
  37. J. E. A. Pedder, A. S. Holmes, and P. E. Dyer, “Improved model for the angular dependence of excimer laser ablation rates in polymer materials,” Appl. Phys. Lett.95(17), 174105 (2009). [CrossRef]
  38. J. R. Jiménez, J. J. Castro, C. Ortiz, and R. G. Anera, “Testing a model for excimer laser-ablation rates on corneal shape after refractive surgery,” Opt. Lett.35(11), 1789–1791 (2010). [CrossRef] [PubMed]
  39. C. Dorronsoro, S. Schumacher, P. Pérez-Merino, J. Siegel, M. Mrochen, and S. Marcos, “Effect of air-flow on the evaluation of refractive surgery ablation patterns,” Opt. Express19(5), 4653–4666 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited