OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 8 — Aug. 1, 2013
  • pp: 1442–1450

Micro-ultrasonic cleaving of cell clusters by laser-generated focused ultrasound and its mechanisms

Hyoung Won Baac, Taehwa Lee, and L. Jay Guo  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 8, pp. 1442-1450 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3915 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser-generated focused ultrasound (LGFU) is a unique modality that can produce single-pulsed cavitation and strong local disturbances on a tight focal spot (<100 μm). We utilize LGFU as a non-contact, non-thermal, high-precision tool to fractionate and cleave cell clusters cultured on glass substrates. Fractionation processes are investigated in detail, which confirms distinct cell behaviors in the focal center and the periphery of LGFU spot. For better understanding of local disturbances under LGFU, we use a high-speed laser-flash shadowgraphy technique and then fully visualize instantaneous microscopic processes from the ultrasound wave focusing to the micro-bubble collapse. Based on these visual evidences, we discuss possible mechanisms responsible for the focal and peripheral disruptions, such as a liquid jet-induced wall shear stress and shock emissions due to bubble collapse. The ultrasonic micro-fractionation is readily available for in vitro cell patterning and harvesting. Moreover, it is significant as a preliminary step towards high-precision surgery applications in future.

© 2013 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.7170) Medical optics and biotechnology : Ultrasound

ToC Category:
Cell Studies

Original Manuscript: March 25, 2013
Revised Manuscript: July 3, 2013
Manuscript Accepted: July 10, 2013
Published: July 26, 2013

Hyoung Won Baac, Taehwa Lee, and L. Jay Guo, "Micro-ultrasonic cleaving of cell clusters by laser-generated focused ultrasound and its mechanisms," Biomed. Opt. Express 4, 1442-1450 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Haar and C. Coussios, “High intensity focused ultrasound: physical principles and devices,” Int. J. Hyperthermia23(2), 89–104 (2007). [CrossRef] [PubMed]
  2. C. C. Coussios and R. A. Roy, “Applications of acoustics and cavitation to noninvasive therapy and drug delivery,” Annu. Rev. Fluid Mech.40(1), 395–420 (2008). [CrossRef]
  3. J. E. Lingeman, J. A. McAteer, E. Gnessin, and A. P. Evan, “Shock wave lithotripsy: advances in technology and technique,” Nat Rev Urol6(12), 660–670 (2009). [CrossRef] [PubMed]
  4. J. J. Rassweiler, T. Knoll, K.-U. Köhrmann, J. A. McAteer, J. E. Lingeman, R. O. Cleveland, M. R. Bailey, and C. Chaussy, “Shock wave technology and application: an update,” Eur. Urol.59(5), 784–796 (2011). [CrossRef] [PubMed]
  5. J. E. Kennedy, “High-intensity focused ultrasound in the treatment of solid tumours,” Nat. Rev. Cancer5(4), 321–327 (2005). [CrossRef] [PubMed]
  6. Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J Clin Oncol2(1), 8–27 (2011). [CrossRef] [PubMed]
  7. T. J. Dubinsky, C. Cuevas, M. K. Dighe, O. Kolokythas, and J. H. Hwang, “High-intensity focused ultrasound: current potential and oncologic applications,” AJR Am. J. Roentgenol.190(1), 191–199 (2008). [CrossRef] [PubMed]
  8. C. Goldenstedt, A. Birer, D. Cathignol, and C. Lafon, “Blood clot disruption in vitro using shockwaves delivered by an extracorporeal generator after pre-exposure to lytic agent,” Ultrasound Med. Biol.35(6), 985–990 (2009). [CrossRef] [PubMed]
  9. A. D. Maxwell, “Noninvasive thrombolysis using histotripsy pulsed ultrasound cavitation therapy,” Ph.D. Thesis, University of Michigan (2012).
  10. Z. Xu, A. Ludomirsky, L. Y. Eun, T. L. Hall, B. C. Tran, J. B. Fowlkes, and C. A. Cain, “Controlled ultrasound tissue erosion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(6), 726–736 (2004). [CrossRef] [PubMed]
  11. Z. Xu, J. B. Fowlkes, E. D. Rothman, A. M. Levin, and C. A. Cain, “Controlled ultrasound tissue erosion: The role of dynamic interaction between insonation and microbubble activity,” J. Acoust. Soc. Am.117(1), 424–435 (2005). [CrossRef] [PubMed]
  12. A. Maxwell, O. Sapozhnikov, M. Bailey, L. Crum, Z. Xu, B. Fowlkes, C. Cain, and V. Khokhlova, “Disintegration of tissue using high intensity focused ultrasound: two approaches that utilize shock waves,” Acou. Today8(4), 24–37 (2012). [CrossRef]
  13. C.-D. Ohl and B. Wolfrum, “Detachment and sonoporation of adherent HeLa-cells by shock wave-induced cavitation,” Biochim. Biophys. Acta1624(1-3), 131–138 (2003). [CrossRef] [PubMed]
  14. L. Junge, C. D. Ohl, B. Wolfrum, M. Arora, and R. Ikink, “Cell detachment method using shock-wave-induced cavitation,” Ultrasound Med. Biol.29(12), 1769–1776 (2003). [CrossRef] [PubMed]
  15. C.-D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, and D. Lohse, “Sonoporation from jetting cavitation bubbles,” Biophys. J.91(11), 4285–4295 (2006). [CrossRef] [PubMed]
  16. R. Dijkink, S. Le Gac, E. Nijhuis, A. van den Berg, I. Vermes, A. Poot, and C.-D. Ohl, “Controlled cavitation-cell interaction: trans-membrane transport and viability studies,” Phys. Med. Biol.53(2), 375–390 (2008). [CrossRef] [PubMed]
  17. H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci Rep2, 989 (2012). [CrossRef] [PubMed]
  18. H. W. Baac, J. Frampton, J. G. Ok, S. Takayama, and L. J. Guo, “Localized micro-scale disruption of cells using laser-generated focused ultrasound,” J. Biophoton. doi: (2013). [CrossRef]
  19. H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett.97(23), 234104 (2010). [CrossRef] [PubMed]
  20. T. Lee, D. Jang, D. Ahn, and D. Kim, “Effect of liquid environment on laser-induced backside wet etching of fused silica,” J. Appl. Phys.107(3), 033112 (2010). [CrossRef]
  21. K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, “Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects,” Biophys. J.91(1), 317–329 (2006). [CrossRef] [PubMed]
  22. D. G. Shchukin, E. Skorb, V. Belova, and H. Möhwald, “Ultrasonic cavitation at solid surfaces,” Adv. Mater.23(17), 1922–1934 (2011). [CrossRef] [PubMed]
  23. T. D. Mast, “Empirical relationships between acoustic parameters in human soft tissues,” ARLO1(2), 37 (2000). [CrossRef]
  24. E. Zwaan, S. Le Gac, K. Tsuji, and C.-D. Ohl, “Controlled cavitation in microfluidic systems,” Phys. Rev. Lett.98(25), 254501 (2007). [CrossRef] [PubMed]
  25. E. Herbert, S. Balibar, and F. Caupin, “Cavitation pressure in water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(4), 041603 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (4323 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited