OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 8 — Aug. 1, 2013
  • pp: 1451–1463

Continuous real-time photoacoustic demodulation via field programmable gate array for dynamic imaging of zebrafish cardiac cycle

Scott P. Mattison, Ryan L. Shelton, Ryan T. Maxson, and Brian E. Applegate  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 8, pp. 1451-1463 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A four dimensional data set of the cardiac cycle of a zebrafish embryo was acquired using postacquisition synchronization of real time photoacoustic b-scans. Utilizing an off-axis photoacoustic microscopy (OA-PAM) setup, we have expanded upon our previous work with OA-PAM to develop a system that can sustain 100 kHz line rates while demodulating the bipolar photoacoustic signal in real-time. Real-time processing was accomplished by quadrature demodulation on a Field Programmable Gate Array (FPGA) in line with the signal digitizer. Simulated data acquisition verified the system is capable of real-time processing up to a line rate of 1 MHz. Galvanometer-scanning of the excitation laser inside the focus of the ultrasonic transducer enables real data acquisition of a 200 by 200 by 200 pixel, volumetric data set across a 2 millimeter field of view at a rate of 2.5 Hz.

© 2013 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(110.5120) Imaging systems : Photoacoustic imaging
(110.5125) Imaging systems : Photoacoustics

ToC Category:
Photoacoustic Imaging and Spectroscopy

Original Manuscript: June 10, 2013
Revised Manuscript: July 22, 2013
Manuscript Accepted: July 23, 2013
Published: July 29, 2013

Scott P. Mattison, Ryan L. Shelton, Ryan T. Maxson, and Brian E. Applegate, "Continuous real-time photoacoustic demodulation via field programmable gate array for dynamic imaging of zebrafish cardiac cycle," Biomed. Opt. Express 4, 1451-1463 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett.15(11), 325–326 (1979). [CrossRef]
  2. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010). [CrossRef] [PubMed]
  3. K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett.30(6), 625–627 (2005). [CrossRef] [PubMed]
  4. L. D. Wang, K. Maslov, J. J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011). [CrossRef] [PubMed]
  5. S. L. Chen, Z. X. Xie, T. Ling, L. J. Guo, X. B. Wei, and X. D. Wang, “Miniaturized all-optical photoacoustic microscopy based on microelectromechanical systems mirror scanning,” Opt. Lett.37(20), 4263–4265 (2012). [CrossRef] [PubMed]
  6. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006). [CrossRef] [PubMed]
  7. H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006). [CrossRef] [PubMed]
  8. J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006). [CrossRef] [PubMed]
  9. C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012). [CrossRef] [PubMed]
  10. R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008). [CrossRef] [PubMed]
  11. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007). [CrossRef] [PubMed]
  12. K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008). [CrossRef] [PubMed]
  13. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008). [CrossRef] [PubMed]
  14. Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008). [CrossRef] [PubMed]
  15. Z. Lin, C. Lin, X. Lu, R. Ye, and Y. Huang, “Study of photoacoustic imaging based on all-optical detection,” 71602K (2008).
  16. R. L. Shelton and B. E. Applegate, “Off-axis photoacoustic microscopy,” IEEE Trans. Biomed. Eng.57(8), 1835–1838 (2010). [CrossRef] [PubMed]
  17. W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013). [CrossRef] [PubMed]
  18. G. York and Y. Kim, “Ultrasound processing and computing: review and future directions,” Annu. Rev. Biomed. Eng.1(1), 559–588 (1999). [CrossRef] [PubMed]
  19. Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004). [CrossRef] [PubMed]
  20. Z. Li, Z. Zeng, W. Xie, and H. Li, “A method for simultaneously estimating acoustic and optical properties of heterogeneous absorber using focused photoacoustic imaging based on Hilbert transform,” 82232D (2012).
  21. J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(9), 1792–1801 (2007). [CrossRef] [PubMed]
  22. S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008). [CrossRef]
  23. R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech.71(3), 201–213 (2008). [CrossRef] [PubMed]
  24. M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012). [CrossRef] [PubMed]
  25. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008). [CrossRef] [PubMed]
  26. J. Karlsson, J. von Hofsten, and P. E. Olsson, “Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development,” Mar. Biotechnol. (NY)3(6), 522–527 (2001). [CrossRef] [PubMed]
  27. C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012). [CrossRef] [PubMed]
  28. Z. X. Xie, S. L. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34(12), 1771–1773 (2009). [CrossRef] [PubMed]
  29. M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005). [CrossRef] [PubMed]
  30. N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2073 KB)     
» Media 2: AVI (842 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited