OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1504–1511

Observing single protein binding by optical transmission through a double nanohole aperture in a metal film

Ahmed A. Al Balushi, Ana Zehtabi-Oskuie, and Reuven Gordon  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 9, pp. 1504-1511 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1067 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate protein binding at the single particle level. A double nanohole (DNH) optical trap was used to hold onto a 20 nm biotin-coated polystyrene (PS) particle which subsequently is bound to streptavidin. Biotin-streptavidin binding has been detected by an increase in the optical transmission through the DNH. Similar optical transmission behavior was not observed when streptavidin binding sites where blocked by mixing streptavidin with excess biotin. Furthermore, interaction of non-functionalized PS particles with streptavidin did not induce a change in the optical transmission through the DNH. These results are promising as the DNH trap can make an excellent single molecule resolution sensor which would enable studying biomolecular interactions and dynamics at a single particle/molecule level.

© 2013 OSA

OCIS Codes
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Traps, Manipulation, and Tracking

Original Manuscript: June 14, 2013
Revised Manuscript: July 26, 2013
Manuscript Accepted: July 26, 2013
Published: August 1, 2013

Virtual Issues
Optical Trapping and Applications (2013) Biomedical Optics Express

Ahmed A. Al Balushi, Ana Zehtabi-Oskuie, and Reuven Gordon, "Observing single protein binding by optical transmission through a double nanohole aperture in a metal film," Biomed. Opt. Express 4, 1504-1511 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. Ahn, J. H. Kim, N. F. Reuel, P. W. Barone, A. A. Boghossian, J. Zhang, H. Yoon, A. C. Chang, A. J. Hilmer, and M. S. Strano, “Label-Free, Single Protein Detection on a Near-Infrared Fluorescent Single-Walled Carbon Nanotube/Protein Microarray Fabricated by Cell-Free Synthesis,” Nano Lett.11(7), 2743–2752 (2011). [CrossRef] [PubMed]
  2. A. Abbas, M. J. Linman, and Q. A. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011). [CrossRef] [PubMed]
  3. C. Cecconi, E. A. Shank, C. Bustamante, and S. Marqusee, “Direct Observation of the Three-State Folding of a Single Protein Molecule,” Science309(5743), 2057–2060 (2005). [CrossRef] [PubMed]
  4. A. Hoffmann, K. Neupane, and M. T. Woodside, “Single-molecule assays for investigating protein misfolding and aggregation,” Phys. Chem. Chem. Phys.15(21), 7934–7948 (2013). [CrossRef] [PubMed]
  5. A. Borgia, P. M. Williams, and J. Clarke, “Single-Molecule Studies of Protein Folding,” Annu. Rev. Biochem.77(1), 101–125 (2008). [CrossRef] [PubMed]
  6. I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles,” Nano Lett.12(2), 1092–1095 (2012). [CrossRef] [PubMed]
  7. P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7(6), 379–382 (2012). [CrossRef] [PubMed]
  8. Y. Pang and R. Gordon, “Optical Trapping of a Single Protein,” Nano Lett.12(1), 402–406 (2012). [CrossRef] [PubMed]
  9. A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip13(13), 2563–2568 (2013). [CrossRef] [PubMed]
  10. A. Zehtabi-Oskuie, J. G. Bergeron, and R. Gordon, “Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres,” Sci Rep2, 966 (2012). [CrossRef] [PubMed]
  11. Y. Pang and R. Gordon, “Optical Trapping of 12 nm Dielectric Spheres Using Double-Nanoholes in a Gold Film,” Nano Lett.11(9), 3763–3767 (2011). [CrossRef] [PubMed]
  12. N. M. Green, “Avidin,” Adv. Protein Chem.29, 85–133 (1975). [CrossRef] [PubMed]
  13. L. Huang and O. J. F. Martin, “Reversal of the optical force in a plasmonic trap,” Opt. Lett.33(24), 3001–3003 (2008). [CrossRef] [PubMed]
  14. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos Trans A Math Phys Eng Sci362(1817), 719–737 (2004). [CrossRef] [PubMed]
  15. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999). [CrossRef]
  16. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997). [CrossRef]
  17. M. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009). [CrossRef]
  18. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  19. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science293(5533), 1289–1292 (2001). [CrossRef] [PubMed]
  20. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J.72(3), 1335–1346 (1997). [CrossRef] [PubMed]
  21. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature438(7067), 460–465 (2005). [CrossRef] [PubMed]
  22. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature368(6467), 113–119 (1994). [CrossRef] [PubMed]
  23. Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber Grating Aptasensor,” Anal. Chem.83(18), 7027–7034 (2011). [CrossRef] [PubMed]
  24. J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta649(2), 141–157 (2009). [CrossRef] [PubMed]
  25. H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett.88(13), 131103 (2006). [CrossRef]
  26. M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, “An Automated Two-Dimensional Optical Force Clamp for Single Molecule Studies,” Biophys. J.83(1), 491–501 (2002). [CrossRef] [PubMed]
  27. W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive All-Optical Force Clamp for High-Resolution Laser Trapping,” Phys. Rev. Lett.95(20), 208102 (2005). [CrossRef] [PubMed]
  28. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable Plasmonic Trapping Using a Gold Stripe,” Nano Lett.10(9), 3506–3511 (2010). [CrossRef] [PubMed]
  29. A. P. Fields and A. E. Cohen, “Electrokinetic trapping at the one nanometer limit,” Proc. Natl. Acad. Sci. U.S.A.108(22), 8937–8942 (2011). [CrossRef] [PubMed]
  30. J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano5(7), 5457–5462 (2011). [CrossRef] [PubMed]
  31. N. C. Lindquist, J. Jose, S. Cherukulappurath, X. Chen, T. W. Johnson, and S. Oh, “Tip-based plasmonics: squeezing light with metallic nanoprobes,” Laser & Photon. Rev.11, 1863–8899 (2013).
  32. A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett.12(11), 5581–5586 (2012). [CrossRef] [PubMed]
  33. Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled Photonic Manipulation of Proteins and Other Nanomaterials,” Nano Lett.12(3), 1633–1637 (2012). [CrossRef] [PubMed]
  34. S. Lin and K. B. Crozier, “Trapping-Assisted Sensing of Particles and Proteins Using On-Chip Optical Microcavities,” ACS Nano7(2), 1725–1730 (2013). [CrossRef] [PubMed]
  35. K. Wang and K. B. Crozier, “Plasmonic Trapping with a Gold Nanopillar,” ChemPhysChem13(11), 2639–2648 (2012). [CrossRef] [PubMed]
  36. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat Commun2, 469 (2011). [CrossRef] [PubMed]
  37. A. Holmberg, A. Blomstergren, O. Nord, M. Lukacs, J. Lundeberg, and M. Uhlén, “The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures,” Electrophoresis26(3), 501–510 (2005). [CrossRef] [PubMed]
  38. M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. de Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nat. Nanotechnol.8(3), 175–179 (2013). [CrossRef] [PubMed]
  39. A. Ahmed and R. Gordon, “Directivity Enhanced Raman Spectroscopy using Nanoantennas,” Nano Lett.11(4), 1800–1803 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited