OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1519–1532

Compressive sensing with dispersion compensation on non-linear wavenumber sampled spectral domain optical coherence tomography

Daguang Xu, Yong Huang, and Jin U. Kang  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 9, pp. 1519-1532 (2013)
http://dx.doi.org/10.1364/BOE.4.001519


View Full Text Article

Enhanced HTML    Acrobat PDF (3852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel compressive sensing (CS) method on spectral domain optical coherence tomography (SDOCT). By replacing the widely used uniform discrete Fourier transform (UDFT) matrix with a new sensing matrix which is a modification of the non-uniform discrete Fourier transform (NUDFT) matrix, it is shown that undersampled non-linear wavenumber spectral data can be used directly in the CS reconstruction. Thus k-space grid filling and k-linear mask calibration which were proposed to obtain linear wavenumber sampling from the non-linear wavenumber interferometric spectra in previous studies of CS in SDOCT (CS-SDOCT) are no longer needed. The NUDFT matrix is modified to promote the sparsity of reconstructed A-scans by making them symmetric while preserving the value of the desired half. In addition, we show that dispersion compensation can be implemented by multiplying the frequency-dependent correcting phase directly to the real spectra, eliminating the need for constructing complex component of the real spectra. This enables the incorporation of dispersion compensation into the CS reconstruction by adding the correcting term to the modified NUDFT matrix. With this new sensing matrix, A-scan with dispersion compensation can be reconstructed from undersampled non-linear wavenumber spectral data by CS reconstruction. Experimental results show that proposed method can achieve high quality imaging with dispersion compensation.

© 2013 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: April 25, 2013
Revised Manuscript: July 12, 2013
Manuscript Accepted: July 21, 2013
Published: August 2, 2013

Citation
Daguang Xu, Yong Huang, and Jin U. Kang, "Compressive sensing with dispersion compensation on non-linear wavenumber sampled spectral domain optical coherence tomography," Biomed. Opt. Express 4, 1519-1532 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-9-1519


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Drexler and J. G. Fujimoto, Optical coherence tomography: Technology and Applications (Springer, Berlin, Germany, 2008). [CrossRef]
  2. A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys., 66(2), 239–303 (2003). [CrossRef]
  3. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express, 11(8), 889–894 (2003). [CrossRef]
  4. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express, 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  5. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, 52(4), 1289–1306 (2006). [CrossRef]
  6. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” Inf. Theory, 52(2), 489–509 (2006). [CrossRef]
  7. E. J. Candes and T. Tao, “Near-optical signal recovery from random projection: universal encoding strategies?” IEEE Trans. Inf. Theory, 52(12), 5406–5425 (2006). [CrossRef]
  8. N. Mohan, I. Stojanovic, W.C. Karl, B.E.A. Saleh, and M.C. Teich, “Compressed sensing in optical coherence tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, SPIE, 7570, 75700L (2010). [CrossRef]
  9. X. Liu and J. U. Kang, “Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography,” Opt. Express, 18(21), 22010–22019 (2010). [CrossRef] [PubMed]
  10. E. Lebed, P. J. Mackenzie, M. V. Sarunic, and F. M. Beg, “Rapid volumetric OCT image acquisition using compressive sampling,” Opt. Express, 18(29), 21003–21012 (2010). [CrossRef] [PubMed]
  11. M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Biomed. Opt. Express, 2(9), 2690–2697 (2011). [CrossRef]
  12. X. Liu and J. U. Kang, “Sparse OCT: Optimizing compressed sensing in spectral domain optical coherence tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, SPIE, 7904, 79041CL (2011).
  13. L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Toth, and S. Farsiu, “Sparsity based denoising of spectral domain optical coherence tomography images,” Biomed. Opt. Express3(5), 927–942 (2012). [CrossRef] [PubMed]
  14. N. Zhang, T. Huo, C. Wang, T. Chen, J. Zheng, and P. Xue, “Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography,” Opt. Lett.37(15), 3075–3077 (2012). [CrossRef] [PubMed]
  15. D. Xu, N. Vaswani, Y. Huang, and J. U. Kang, “Modified compressive sensing optical coherence tomography with noise reduction,” Opt. Lett.37(20), 4209–4211 (2012). [CrossRef] [PubMed]
  16. S. Schwartz, C. Liu, A. Wong, D. A. Clausi, P. Fieguth, and K. Bizheva, “Energy-guided learning approach to compressive sensing,” Opt. Express21(1), 329–344 (2013). [CrossRef] [PubMed]
  17. J. Ke and E. Lam, “Image reconstruction from nonuniformly spaced samples in spectral-domain optical coherence tomography,” Biomed. Opt. Express3, 741–752 (2012). [CrossRef] [PubMed]
  18. M. Jeon, J. Kim, U. Jung, C. Lee, W. Jung, and S. A. Boppart, “Full-range k-domain linearization in spectral-domain optical coherence tomography, Appl. Opt.50, 1158–1162 (2011). [CrossRef] [PubMed]
  19. H. K. Chan and S. Tang, High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform, Biomed. Opt. Express1, 1309–1319 (2010). [CrossRef]
  20. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010). [CrossRef] [PubMed]
  21. S.S. Sherif, C. Flueraru, Y. Mao, and S. Change, “Swept source optical coherence tomography with nonuniform frequency domain sampling,” Biomedical Optics, OSA, Technical Digest (CD)(Optical Society of America, 2008), paper BMD86. [CrossRef]
  22. K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express17(14), 12121–12131 (2009). [CrossRef] [PubMed]
  23. S. Vergnole, D. Levesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express18(12), 10446–10461 (2010). [CrossRef] [PubMed]
  24. M. Lustig and J. M. Pauly, “SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space,” Magn. Reson. Med., 64, 457–471 (2010). [PubMed]
  25. F. Knoll, G. Schultz, K. Bredies, D. Gallichan, M. Zaitsev, J. Hennig, and R. Stollberger, “Reconstruction of undersampled radial PatLoc imaging using total generalized variation,” Magn. Reson. Med.37(15), in Press (2012).
  26. E. Aboussouan, L. Marinelli, and E. Tan, “Non-cartesian compressed sensing for diffusion spectrum imaging,” Proc. Intl. Soc. Mag. Recon. Med., 19, 1919 (2011).
  27. X. Chen, M. Salerno, F. H. Epstein, and C. H. Meyer, “Accelerated multi-TI spiral MRI using compressed sensing with temporal constraints,” Proc. Intl. Soc. Mag. Recon. Med.19, 4369 (2011).
  28. M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  29. Y. Chen and X. Li, “Dispersion management up to the third order for real-time optical coherence tomography involving a phase or frequency modulator,” Opt. Express12(24), 5968–5978 (2004). [CrossRef] [PubMed]
  30. D.L. Marks, A.L. Oldenburg, J.J. Reynolds, and S.A. Boppart, “Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media,” Appl. Opt.42(2), 204–217 (2003). [CrossRef] [PubMed]
  31. K. Zhang and J. U. Kang, “Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography,” Electron. Lett., 47(5), 309–310 (2011). [CrossRef]
  32. E. van den Berg and M.P. Friedlander, “Probing the Pareto frontier for basis pursuit solutions,” SIAM Journal on Scientific Computing, 31(2), 890–912 (2008). [CrossRef]
  33. E. van den Berg and M.P. Friedlander, “SPGL1: a solver for large-scale sparse reconstruction”, http://www.cs.ubc.ca/labs/scl/spgl1 (2007).
  34. S. M. Potter, A. Mart, and J. Pine, “High-speed CCD movie camera with random pixel selection for neurobiology research,” Proc. SPIE2869, 243253 (1997).
  35. S. P. Monacos, R. K. Lam, A. A. Portillo, and G. G. Ortiz, “Design of an event-driven random-assess-windowing CCD-based camera,” Proc. SPIE4975, 115 (2003). [CrossRef]
  36. B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996). [CrossRef]
  37. M. lusting, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007). [CrossRef]
  38. S. Becker, J. O. Robin, and E. J. Candes, “NESTA: a fast and accurate first-order method for sparse recovery,” Technical report, California Institute of Technology (2009).
  39. M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “An augmented Lagrangian approach to the constraint optimization formulation of imaging inverse problems,” IEEE Trans. on Image Proc.20(3), 681–695 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited