OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1571–1583

Spatial Light Interference Microscopy (SLIM) using twisted-nematic liquid-crystal modulation

Tan H. Nguyen and Gabriel Popescu  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 9, pp. 1571-1583 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2218 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the use of a twisted nematic liquid-crystal spatial light modulator (TNLC-SLM) for quantitative phase imaging. The experimental setup is a new implementation of the SLIM principle, which is a phase shifting, white light method for quantitative phase imaging. The approach is based on switching between the phase and amplitude modulation modes of the SLM. Our system is able to deliver a 0.99 nm spatial and 1.33 nm temporal pathlength sensitivity while retaining the optical transverse resolution. The system is implemented as an additional module mounted to a conventional microscope, which makes the system very easy to deploy and integrate with other imaging modalities.

© 2013 OSA

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(110.0110) Imaging systems : Imaging systems
(180.0180) Microscopy : Microscopy
(180.3170) Microscopy : Interference microscopy
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:

Original Manuscript: June 17, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: July 30, 2013
Published: August 8, 2013

Virtual Issues
Novel Techniques in Microscopy (2013) Biomedical Optics Express

Tan H. Nguyen and Gabriel Popescu, "Spatial Light Interference Microscopy (SLIM) using twisted-nematic liquid-crystal modulation," Biomed. Opt. Express 4, 1571-1583 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Popescu, Quantitative Phase Imaging of Cells and Tissues, Biophotonics (Mcgraw-Hill, 2011).
  2. A. Atalar, C. F. Quate, and H. K. Wickramasinghe, “Phase imaging in reflection with the acoustic microscope,” Appl. Phys. Lett.31(12), 791–793 (1977). [CrossRef]
  3. C. J. Sheppard and T. Wilson, “Fourier imaging of phase information in scanning and conventional optical microscopes,” Philos. Trans. R. Soc. London, Ser. A295, 513–536 (1980).
  4. T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun.133(1-6), 339–346 (1997). [CrossRef]
  5. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett.30(10), 1165–1167 (2005). [CrossRef] [PubMed]
  6. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett.29(21), 2503–2505 (2004). [CrossRef] [PubMed]
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett.24(5), 291–293 (1999). [CrossRef] [PubMed]
  8. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett.30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  9. K. Creath and G. Goldstein, “Dynamic quantitative phase imaging for biological objects using a pixelated phase mask,” Biomed. Opt. Express3(11), 2866–2880 (2012). [CrossRef] [PubMed]
  10. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express17(15), 13080–13094 (2009). [CrossRef] [PubMed]
  11. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13(22), 8693–8698 (2005). [CrossRef] [PubMed]
  12. E. Wolf, Progress in Optics (Elsevier Science, 2012), Vol. 57.
  13. Z. Wang, L. Millet, V. Chan, H. F. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt.16(2), 026019 (2011). [CrossRef] [PubMed]
  14. R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M. U. Gillette, A. J. Levine, and G. Popescu, “One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy,” J. Phys. Condens. Matter23(37), 374107 (2011). [CrossRef] [PubMed]
  15. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, and R. R. Dasari, “Optical imaging of cell mass and growth dynamics,” Am J. Physiol.295, 538–544 (2008).
  16. M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13124–13129 (2011). [CrossRef] [PubMed]
  17. Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6731–6736 (2010). [CrossRef] [PubMed]
  18. Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express19(21), 19907–19918 (2011). [CrossRef] [PubMed]
  19. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007). [CrossRef] [PubMed]
  20. Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett.35(2), 208–210 (2010). [CrossRef] [PubMed]
  21. Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt.16(11), 116017 (2011). [CrossRef] [PubMed]
  22. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett.37(6), 1094–1096 (2012). [CrossRef] [PubMed]
  23. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett.31(6), 775–777 (2006). [CrossRef] [PubMed]
  24. Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19, 1016–1026 (2011).
  25. D. Zicha and G. A. Dunn, “An Image-Processing System For Cell Behavior Studies In Subconfluent Cultures,” J. Microsc.179(1), 11–21 (1995). [CrossRef]
  26. W. C. Warger and C. A. DiMarzio, “Computational signal-to-noise ratio analysis for optical quadrature microscopy,” Opt. Express17(4), 2400–2422 (2009). [CrossRef] [PubMed]
  27. M. Young, B. Faulkner, and J. Cole, “Resolution in optical systems using coherent illumination,” J. Opt. Soc. Am.60(1), 137–139 (1970). [CrossRef]
  28. J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts & Co, 2007).
  29. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998). [CrossRef]
  30. A. Yariv and P. Yeh, Optical waves in crystals (Wiley New York, 1984), Vol. 5.
  31. K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng.29, 240–244 (1989).
  32. J. L. Pezzaniti and R. A. Chipman, “Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states,” Opt. Lett.18(18), 1567–1569 (1993). [CrossRef] [PubMed]
  33. T. H. Barnes, T. Eiju, K. Matusda, and N. Ooyama, “Phase-only modulation using a twisted nematic liquid crystal television,” Appl. Opt.28(22), 4845–4852 (1989). [CrossRef] [PubMed]
  34. N. Konforti, E. Marom, and S.-T. Wu, “Phase-only modulation with twisted nematic liquid-crystal spatial light modulators,” Opt. Lett.13(3), 251–253 (1988). [CrossRef] [PubMed]
  35. Z. Yin, K. Li, T. Kanade, and M. Chen, “Understanding the optics to aid microscopy image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010 (Springer, 2010), pp. 209–217.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2256 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited