OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1595–1609

Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT

Enrique Gambra, Sergio Ortiz, Pablo Perez-Merino, Michalina Gora, Maciej Wojtkowski, and Susana Marcos  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 9, pp. 1595-1609 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1556 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Custom high-resolution high-speed anterior segment spectral domain Optical Coherence Tomography (OCT) provided with automatic quantification and distortion correction algorithms was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo in four subjects, for accommodative demands between 0 to 6 D in 1 D steps. Anterior and posterior lens radii of curvature decreased with accommodative demand at rates of 0.73 and 0.20 mm/D, resulting in an increase of the estimated optical power of the eye of 0.62 D per diopter of accommodative demand. Dynamic fluctuations in crystalline lens radii of curvature, anterior chamber depth and lens thickness were also estimated from dynamic 2-D OCT images (14 Hz), acquired during 5-s of steady fixation, for different accommodative demands. Estimates of the eye power from dynamical geometrical measurements revealed an increase of the fluctuations of the accommodative response from 0.07 D to 0.47 D between 0 and 6 D (0.044 D per D of accommodative demand). A sensitivity analysis showed that the fluctuations of accommodation were driven by dynamic changes in the lens surfaces, particularly in the posterior lens surface.

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(330.7322) Vision, color, and visual optics : Visual optics, accommodation
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Optical Coherence Tomography

Original Manuscript: May 29, 2013
Revised Manuscript: July 21, 2013
Manuscript Accepted: July 21, 2013
Published: August 8, 2013

Enrique Gambra, Sergio Ortiz, Pablo Perez-Merino, Michalina Gora, Maciej Wojtkowski, and Susana Marcos, "Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT," Biomed. Opt. Express 4, 1595-1609 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. C. Locke and W. Somers, “A comparison study of dynamic retinoscopy techniques,” Optom. Vis. Sci.66(8), 540–544 (1989). [CrossRef] [PubMed]
  2. E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, and S. Tsujimura, “Clinical evaluation of the Shin-Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt.21(2), 101–107 (2001). [CrossRef] [PubMed]
  3. J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res.40(1), 41–48 (2000). [CrossRef] [PubMed]
  4. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A18(3), 497–506 (2001). [CrossRef] [PubMed]
  5. S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis.5(5), 466–477 (2005), http://www.journalofvision.org/5/5/7 . [CrossRef] [PubMed]
  6. K. M. Hampson, C. Paterson, C. Dainty, and E. A. Mallen, “Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control,” J. Opt. Soc. Am. A23(5), 1082–1088 (2006). [CrossRef] [PubMed]
  7. E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis.9(6), 1–15 (2009), http://www.journalofvision.org/9/6/4 . [CrossRef] [PubMed]
  8. W. N. Charman and G. Heron, “Fluctuations in accommodation: A review,” Ophthalmic Physiol. Opt.8(2), 153–164 (1988). [CrossRef] [PubMed]
  9. L. S. Gray, B. Winn, and B. Gilmartin, “Accommodative microfluctuations and pupil diameter,” Vision Res.33(15), 2083–2090 (1993). [CrossRef] [PubMed]
  10. J. C. Kotulak and C. M. Schor, “A computational model of the error detector of human visual accommodation,” Biol. Cybern.54(3), 189–194 (1986a). [CrossRef] [PubMed]
  11. C. Miege and P. Denieul, “Mean response and oscillations of accommodation for various stimulus vergences in relation to accommodation feedback control,” Ophthalmic Physiol. Opt.8(2), 165–171 (1988). [CrossRef] [PubMed]
  12. L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt.17(1), 12–17 (1997). [CrossRef] [PubMed]
  13. P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 1057–1067 (2006), http://www.journalofvision.org/6/10/5 . [CrossRef] [PubMed]
  14. N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res.15(4), 441–459 (1973). [CrossRef] [PubMed]
  15. J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci.38(3), 569–578 (1997). [PubMed]
  16. J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A21(3), 346–354 (2004). [CrossRef] [PubMed]
  17. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005). [CrossRef] [PubMed]
  18. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009). [CrossRef] [PubMed]
  19. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011), http://www.journalofvision.org/11/3/19 . [CrossRef] [PubMed]
  20. A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci.80(5), 383–394 (2003). [CrossRef] [PubMed]
  21. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  22. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009). [CrossRef] [PubMed]
  23. M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007). [CrossRef] [PubMed]
  24. R. Yadav, K. Ahmad, and G. Yoon, “Scanning system design for large scan depth anterior segment optical coherence tomography,” Opt. Lett.35(11), 1774–1776 (2010). [CrossRef] [PubMed]
  25. M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010). [CrossRef] [PubMed]
  26. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009). [CrossRef] [PubMed]
  27. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010). [CrossRef] [PubMed]
  28. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011). [CrossRef] [PubMed]
  29. K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express2(9), 2709–2720 (2011). [CrossRef] [PubMed]
  30. S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express3(10), 2471–2488 (2012). [CrossRef] [PubMed]
  31. S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express4(3), 387–396 (2013). [CrossRef] [PubMed]
  32. H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express1(5), 1491–1501 (2010). [CrossRef] [PubMed]
  33. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  34. C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express17(11), 8947–8955 (2009). [CrossRef] [PubMed]
  35. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012). [CrossRef] [PubMed]
  36. Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013). [CrossRef] [PubMed]
  37. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using Spectral-Domain OCT with an optical switch,” Biomed. Opt. Express3(7), 1506–1520 (2012). [CrossRef] [PubMed]
  38. C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012). [CrossRef] [PubMed]
  39. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012). [CrossRef] [PubMed]
  40. N. Satoh, K. Shimizu, A. Goto, A. Igarashi, K. Kamiya, and K. Ohbayashi, “Accommodative changes in human eye observed by Kitasato anterior segment optical coherence tomography,” Jpn. J. Ophthalmol.57(1), 113–119 (2013). [CrossRef] [PubMed]
  41. S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012). [CrossRef] [PubMed]
  42. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008). [CrossRef] [PubMed]
  43. E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci.85(12), 1179–1184 (2008). [CrossRef] [PubMed]
  44. A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and Gradient Refractive Index in the accommodative changes of spherical aberration in non-human primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.in press.
  45. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001). [CrossRef] [PubMed]
  46. W. N. Charman and J. Tucker, “Dependence of accommodation response on the spatial frequency spectrum of the observed object,” Vision Res.17(1), 129–139 (1977). [CrossRef] [PubMed]
  47. J. F. McClelland and K. J. Saunders, “The repeatability and validity of dynamic retinoscopy in assessing the accommodative response,” Ophthalmic Physiol. Opt.23(3), 243–250 (2003). [CrossRef] [PubMed]
  48. W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998). [PubMed]
  49. G. L. van der Heijde, A. P. A. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996). [CrossRef] [PubMed]
  50. J. C. Kotulak and C. M. Schor, “Temporal variations in accommodation during steady-state conditions,” J. Opt. Soc. Am. A3(2), 223–227 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (920 KB)     
» Media 2: MOV (7321 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited