OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1610–1617

Optical theorem for acoustic non-diffracting beams and application to radiation force and torque

Likun Zhang and Philip L. Marston  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 9, pp. 1610-1617 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (845 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Acoustical and optical non-diffracting beams are potentially useful for manipulating particles and larger objects. An extended optical theorem for a non-diffracting beam was given recently in the context of acoustics. The theorem relates the extinction by an object to the scattering at the forward direction of the beam’s plane wave components. Here we use this theorem to examine the extinction cross section of a sphere centered on the axis of the beam, with a non-diffracting Bessel beam as an example. The results are applied to recover the axial radiation force and torque on the sphere by the Bessel beam.

© 2013 OSA

OCIS Codes
(290.2200) Scattering : Extinction
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Traps, Manipulation, and Tracking

Original Manuscript: June 17, 2013
Revised Manuscript: August 1, 2013
Manuscript Accepted: August 2, 2013
Published: August 9, 2013

Virtual Issues
Optical Trapping and Applications (2013) Biomedical Optics Express

Likun Zhang and Philip L. Marston, "Optical theorem for acoustic non-diffracting beams and application to radiation force and torque," Biomed. Opt. Express 4, 1610-1617 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.  Durnin, “Exact solutions for nondiffraction beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  2. P. L.  Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am 121, 753 (2007). [CrossRef] [PubMed]
  3. J. C.  Gutiérrez-Vega, M. D.  Iturbe-Castillo, S.  Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000). [CrossRef]
  4. A.  Belafhal, A.  Chafiq, Z.  Hricha, “Scattering of Mathieu beams by a rigid sphere,” Opt. Commun. 284, 3030–3035 (2003). [CrossRef]
  5. M. A.  Bandres, “Accelerating parabolic beams,” Opt. Lett. 33(15), 1678–1680 (2008). [CrossRef] [PubMed]
  6. P. L.  Marston, “Axial radiation force of a Bessel beam on a sphere and direction reversal of the force,” J. Acoust. Soc. Am 120, 3518–3524 (2006). [CrossRef]
  7. P. L.  Marston, “Negative axial radiation forces on solid spheres and shells in a Bessel beam,” J. Acoust. Soc. Am 122, 3162–3165 (2007). [CrossRef]
  8. P. L.  Marston, “Radiation force of a helicoidal Bessel beam on a sphere,” J. Acoust. Soc. Am 125, 3539–3547 (2009). [CrossRef] [PubMed]
  9. F. G.  Mitri, “Negative axial radiation force on a fluid and elastic spheres illuminated by a high-order Bessel beam of progressive waves,” J. Phys. A: Math. Theor. 42, 245202 (2009). [CrossRef]
  10. L. K.  Zhang, P. L.  Marston, “Geometrical interpretation of negative radiation forces of acoustical Bessel beams on spheres,” Phys. Rev. E 84, 035601(R) (2011). [CrossRef]
  11. J.  Chen, J.  Ng, Z. F.  Lin, C. T.  Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011). [CrossRef]
  12. A.  Novitsky, C.-W.  Qiu, H. F.  Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011). [CrossRef] [PubMed]
  13. N.  Wang, J.  Chen, S. Y.  Liu, Z. F.  Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87, 063812 (2013). [CrossRef]
  14. L. K.  Zhang, P. L.  Marston, “Axial radiation force exerted by general non-diffracting beams,” J. Acoust. Soc. Am. 131, EL329–EL335 (2012). [CrossRef] [PubMed]
  15. S.  Sukhov, A.  Dogariu, “Negative nonconservative forces: Optical tractor beams for arbitrary objects,” Phys. Rev. Lett. 107, 203602 (2011). [CrossRef]
  16. O.  Brzobohatý, V.  Karásek, M.  Šiler, L.  Chvátal, T.  Čižmár, P.  Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ’tractor beam’,” Nat. Photonics 7, 123–127 (2013). [CrossRef]
  17. P. L.  Marston, L. K.  Zhang, “Radiation torques and forces in scattering from spheres and acoustical analogues,” in Optical Trapping Applications, OSA Technical Digest (CD) (Optical Society of America, 2009), p. OMB5.
  18. Y.  Choe, J. W.  Kim, K. K.  Shung, E. S.  Kim, “Microparticle trapping in an ultrasonic Bessel beam,” Appl. Phys. Lett. 99, 233704 (2011). [CrossRef]
  19. S.  Xu, C.  Qiu, Z.  Liu, “Transversally stable acoustic pulling force produced by two crossed plane waves,” Europhys. Lett. 99, 44003 (2012). [CrossRef]
  20. D.  Baresch, J.-L.  Thomas, R.  Marchiano, “Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere,” J. Acoust. Soc. Am. 133, 25–36 (2013). [CrossRef] [PubMed]
  21. C. R. P.  Courtney, B. W.  Drinkwater, C. E. M.  Demore, S.  Cochran, A.  Grinenko, P. D.  Wilcox, “Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields,” Appl. Phys. Lett. 102, 123508 (2013). [CrossRef]
  22. D.  Baresch, J.-L.  Thomas, R.  Marchiano, “Spherical vortex beams of high radial degree for enhanced single-beam tweezers,” J. Appl. Phys. 113, 184901 (2013).
  23. B. T.  Hefner, P. L.  Marston, “An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems,” J. Acoust. Soc. Am. 106, 3313 (1999). [CrossRef]
  24. L. K.  Zhang, P. L.  Marston, “Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects,” Phys. Rev. E 84, 065601(R) (2011). [CrossRef]
  25. L.  Allen, M. W.  Beijersbergen, R. J. C.  Spreeuw, J. P.  Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992). [CrossRef] [PubMed]
  26. P. L.  Marston, J. H.  Crichton, “Radiation torque on a sphere caused by a circularly polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984). [CrossRef]
  27. C. E. M.  Demore, Z.  Yang, A.  Volovick, S.  Cochran, M. P.  MacDonald, G. C.  Spalding, “Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams,” Phys. Rev. Lett. 108, 194301 (2012). [CrossRef] [PubMed]
  28. R. G.  Newton, “Optical theorem and beyond,” Am. J. Phys. 44, 639–642 (1976). [CrossRef]
  29. J. A.  Lock, J. T.  Hodges, G.  Gouesbet, “Failure of the optical theorem for Gaussian-beam scattering by a spherical particle,” J. Opt. Soc. Am. A 12, 2708–2715 (1995). [CrossRef]
  30. P. L.  Marston, “Generalized optical theorem for scatterers having inversion symmetry: applications to acoustic backscattering,” J. Acoust. Soc. Am. 109, 1291–1295 (2001). [CrossRef] [PubMed]
  31. F. G.  Mitri, “Equivalence of expressions for the acoustic scattering of a progressive high-order Bessel beam by an elastic sphere,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1100–1103 (2009). [CrossRef] [PubMed]
  32. L. K.  Zhang, P. L.  Marston, “Radiation torque on a sphere centered on an acoustic helicoidal (vortex) Bessel beam.” J. Acoust. Soc. Am. 125, 2552–2552 (2009).
  33. L. K.  Zhang, P. L.  Marston, “Radiation torque on solid spheres and drops centered on an acoustic helicoidal Bessel beam,” J. Acoust. Soc. Am. 129, 2381–2381 (2011). [CrossRef]
  34. L. K.  Zhang, P. L.  Marston, “Acoustic radiation torque and the conservation of angular momentum,” J. Acoust. Soc. Am. 129, 1679–1680 (2011). [CrossRef] [PubMed]
  35. F. G.  Mitri, T. P.  Lobo, G. T.  Silva, “Axial acoustic radiation torque of a Bessel vortex beam on spherical shells,” Phys. Rev. E 85, 026602 (2012). [CrossRef]
  36. G. T.  Silva, T. P.  Lobo, F. G.  Mitri, “Radiation torque produced by an arbitrary acoustic wave,” Europhys. Lett. 97, 54003 (2012). [CrossRef]
  37. G. T.  Silva, “Off-axis scattering of an ultrasound Bessel beam by a sphere,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 298–304 (2011). [CrossRef] [PubMed]
  38. W. L.  Nyborg, “Acoustic streaming,” in Nonlinear Acoustics, edited by M. F.  Hamilton, D. T.  Blackstock, (Academic Press, CA, 1998), pp. Chap. 7, pp. 207–231.
  39. T.  Hasegawa, K.  Yosioka, “Acoustic radiation force on fused silica spheres, and intensity determination,” J. Acoust. Soc. Am. 58, 581–585 (1975). [CrossRef]
  40. X. C.  Chen, R. E.  Apfel, “Radiation force on a spherical object in an axisymmetric wave field and its application to the calibration of high-frequency transducers,” J. Acoust. Soc. Am. 99, 713–724 (1996). [CrossRef] [PubMed]
  41. P. L.  Marston, “Viscous contributions to low-frequency scattering, power absorption, radiation force, and radiation torque for spheres in acoustic beams,” Proceedings of Meetings on Acoustics (POMA) 19, 045005 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited