OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1636–1645

Spectrally encoded confocal microscopy of esophageal tissues at 100 kHz line rate

Simon C. Schlachter, DongKyun Kang, Michalina J. Gora, Paulino Vacas-Jacques, Tao Wu, Robert W. Carruth, Eric J. Wilsterman, Brett E. Bouma, Kevin Woods, and Guillermo J. Tearney  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 9, pp. 1636-1645 (2013)
http://dx.doi.org/10.1364/BOE.4.001636


View Full Text Article

Enhanced HTML    Acrobat PDF (4402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that uses a diffraction grating to illuminate different locations on the sample with distinct wavelengths. SECM can obtain line images without any beam scanning devices, which opens up the possibility of high-speed imaging with relatively simple probe optics. This feature makes SECM a promising technology for rapid endoscopic imaging of internal organs, such as the esophagus, at microscopic resolution. SECM imaging of the esophagus has been previously demonstrated at relatively low line rates (5 kHz). In this paper, we demonstrate SECM imaging of large regions of esophageal tissues at a high line imaging rate of 100 kHz. The SECM system comprises a wavelength-swept source with a fast sweep rate (100 kHz), high output power (80 mW), and a detector unit with a large bandwidth (100 MHz). The sensitivity of the 100-kHz SECM system was measured to be 60 dB and the transverse resolution was 1.6 µm. Excised swine and human esophageal tissues were imaged with the 100-kHz SECM system at a rate of 6.6 mm2/sec. Architectural and cellular features of esophageal tissues could be clearly visualized in the SECM images, including papillae, glands, and nuclei. These results demonstrate that large-area SECM imaging of esophageal tissues can be successfully conducted at a high line imaging rate of 100 kHz, which will enable whole-organ SECM imaging in vivo.

© 2013 OSA

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2680) Medical optics and biotechnology : Gastrointestinal
(170.4730) Medical optics and biotechnology : Optical pathology

ToC Category:
Microscopy

History
Original Manuscript: June 21, 2013
Revised Manuscript: August 1, 2013
Manuscript Accepted: August 5, 2013
Published: August 13, 2013

Citation
Simon C. Schlachter, DongKyun Kang, Michalina J. Gora, Paulino Vacas-Jacques, Tao Wu, Robert W. Carruth, Eric J. Wilsterman, Brett E. Bouma, Kevin Woods, and Guillermo J. Tearney, "Spectrally encoded confocal microscopy of esophageal tissues at 100 kHz line rate," Biomed. Opt. Express 4, 1636-1645 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-9-1636


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc.62(5), 686–695 (2005). [CrossRef] [PubMed]
  2. R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol.4(8), 979–987 (2006). [CrossRef] [PubMed]
  3. S. Kitabatake, Y. Niwa, R. Miyahara, A. Ohashi, T. Matsuura, Y. Iguchi, Y. Shimoyama, T. Nagasaka, O. Maeda, T. Ando, N. Ohmiya, A. Itoh, Y. Hirooka, and H. Goto, “Confocal endomicroscopy for the diagnosis of gastric cancer in vivo,” Endoscopy38(11), 1110–1114 (2006). [CrossRef] [PubMed]
  4. A. M. Buchner, M. W. Shahid, M. G. Heckman, M. Krishna, M. Ghabril, M. Hasan, J. E. Crook, V. Gomez, M. Raimondo, T. Woodward, H. C. Wolfsen, and M. B. Wallace, “Comparison of probe-based confocal laser endomicroscopy with virtual chromoendoscopy for classification of colon polyps,” Gastroenterology138(3), 834–842 (2010). [CrossRef] [PubMed]
  5. V. Becker, T. Vercauteren, C. H. von Weyhern, C. Prinz, R. M. Schmid, and A. Meining, “High-resolution miniprobe-based confocal microscopy in combination with video mosaicing (with video),” Gastrointest. Endosc.66(5), 1001–1007 (2007). [CrossRef] [PubMed]
  6. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett.23(15), 1152–1154 (1998). [CrossRef] [PubMed]
  7. D. Yelin, C. Boudoux, B. E. Bouma, and G. J. Tearney, “Large area confocal microscopy,” Opt. Lett.32(9), 1102–1104 (2007). [CrossRef] [PubMed]
  8. D. Kang, H. Yoo, P. Jillella, B. E. Bouma, and G. J. Tearney, “Comprehensive volumetric confocal microscopy with adaptive focusing,” Biomed. Opt. Express2(6), 1412–1422 (2011). [CrossRef] [PubMed]
  9. D. Kang, M. J. Suter, C. Boudoux, H. Yoo, P. S. Yachimski, W. P. Puricelli, N. S. Nishioka, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, and G. J. Tearney, “Comprehensive imaging of gastroesophageal biopsy samples by spectrally encoded confocal microscopy,” Gastrointest. Endosc.71(1), 35–43 (2010). [CrossRef] [PubMed]
  10. D. K. Kang, M. J. Suter, C. Boudoux, P. S. Yachimski, W. P. Puricelli, N. S. Nishioka, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, and G. J. Tearney, “Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system,” J. Microsc.239(2), 87–91 (2010). [PubMed]
  11. H. Yoo, D. Kang, A. J. Katz, G. Y. Lauwers, N. S. Nishioka, Y. Yagi, P. Tanpowpong, J. Namati, B. E. Bouma, and G. J. Tearney, “Reflectance confocal microscopy for the diagnosis of eosinophilic esophagitis: a pilot study conducted on biopsy specimens,” Gastrointest. Endosc.74(5), 992–1000 (2011). [CrossRef] [PubMed]
  12. C. Boudoux, S. Yun, W. Oh, W. White, N. Iftimia, M. Shishkov, B. Bouma, and G. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express13(20), 8214–8221 (2005). [CrossRef] [PubMed]
  13. Y. K. Tao and J. A. Izatt, “Spectrally encoded confocal scanning laser ophthalmoscopy,” Opt. Lett.35(4), 574–576 (2010). [CrossRef] [PubMed]
  14. L. Golan, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “High-speed interferometric spectrally encoded flow cytometry,” Opt. Lett.37(24), 5154–5156 (2012). [CrossRef] [PubMed]
  15. T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett.37(16), 3330–3332 (2012). [CrossRef] [PubMed]
  16. C. Glazowski and M. Rajadhyaksha, “Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes,” J. Biomed. Opt.17(8), 085001 (2012). [CrossRef] [PubMed]
  17. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010). [CrossRef] [PubMed]
  18. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited