OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1662–1672

Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom

Simon Hyttel-Sorensen, Stefan Kleiser, Martin Wolf, and Gorm Greisen  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 9, pp. 1662-1672 (2013)
http://dx.doi.org/10.1364/BOE.4.001662


View Full Text Article

Enhanced HTML    Acrobat PDF (2532 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a blood-lipid liquid phantom the prototype near-infrared spectroscopy oximeter OxyPrem was calibrated against the INVOS® 5100c adult sensor in respect to values of regional tissue oxygen haemoglobin saturation (rStO2) for possible inclusion in the randomised clinical trial - SafeBoosC. In addition different commercial NIRS oximeters were compared on changing haemoglobin oxygen saturation and compared against co-oximetry. The best calibration was achieved with a simple offset and a linear scaling of the OxyPrem rStO2 values. The INVOS adult and pediatric sensor gave systematically different values, while the difference between the NIRO® 300 and the two INVOS sensors were magnitude dependent. The co-oximetry proved unreliable on such low haemoglobin and high Intralipid levels.

© 2013 OSA

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Calibration, Validation and Phantom Studies

History
Original Manuscript: May 16, 2013
Revised Manuscript: June 27, 2013
Manuscript Accepted: June 28, 2013
Published: August 14, 2013

Citation
Simon Hyttel-Sorensen, Stefan Kleiser, Martin Wolf, and Gorm Greisen, "Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom," Biomed. Opt. Express 4, 1662-1672 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-9-1662


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology93(4), 947–953 (2000). [CrossRef] [PubMed]
  2. G. Greisen, T. Leung, and M. Wolf, “Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?” Philos Transact A Math Phys Eng. Sci.369, 4440–4451 (2011).
  3. S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013). [PubMed]
  4. W. Knirsch, K. Stutz, O. Kretschmar, M. Tomaske, C. Balmer, A. Schmitz, F. Berger, U. Bauersfeld, M. Weiss, and Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics, “Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children,” Acta Anaesthesiol. Scand.52(10), 1370–1374 (2008). [CrossRef] [PubMed]
  5. K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of a noninvasive neonatal optical cerebral oximeter in veno-venous ECMO patients with a cephalad catheter,” J. Perinatol.26(10), 628–635 (2006). [CrossRef] [PubMed]
  6. N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med.31(6), 846–850 (2005). [CrossRef] [PubMed]
  7. K. Yoshitani, M. Kawaguchi, M. Iwata, N. Sasaoka, S. Inoue, N. Kurumatani, and H. Furuya, “Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia,” Br. J. Anaesth.94(3), 341–346 (2005). [CrossRef] [PubMed]
  8. N. Shimizu, F. Gilder, B. Bissonnette, J. Coles, D. Bohn, and K. Miyasaka, “Brain tissue oxygenation index measured by near infrared spatially resolved spectroscopy agreed with jugular bulb oxygen saturation in normal pediatric brain: a pilot study,” Childs Nerv. Syst.21(3), 181–184 (2005). [CrossRef] [PubMed]
  9. P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the Cas Neonatal NIRS System by Monitoring VV-ECMO Patients,” in Advances in Experimental Medicine and Biology, P. Okunieff, J. Williams, and Y. Chen, eds. Advances in Experimental Medicine and Biology (Springer-Verlag, 2005), Vol. 566, pp. 195–201.
  10. P. E. Daubeney, S. N. Pilkington, E. Janke, G. A. Charlton, D. C. Smith, and S. A. Webber, “Cerebral oxygenation measured by near-infrared spectroscopy: comparison with jugular bulb oximetry,” Ann. Thorac. Surg.61(3), 930–934 (1996). [CrossRef] [PubMed]
  11. T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.132(1), 121–132 (2002). [CrossRef]
  12. S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999). [CrossRef]
  13. P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011). [CrossRef] [PubMed]
  14. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  15. A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol.50(10), 2291–2311 (2005). [CrossRef] [PubMed]
  16. M. Johns, C. Giller, D. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express13(13), 4828–4842 (2005). [CrossRef] [PubMed]
  17. M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999). [CrossRef] [PubMed]
  18. S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005). [CrossRef] [PubMed]
  19. A. Pellicer, E. Valverde, F. Gayá, J. Quero, and F. Cabañas, “Postnatal adaptation of brain circulation in preterm infants,” Pediatr. Neurol.24(2), 103–109 (2001). [CrossRef] [PubMed]
  20. N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp.31(3), 341–352 (2010). [CrossRef] [PubMed]
  21. J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, and E. O. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet2(8515), 1063–1066 (1986). [CrossRef] [PubMed]
  22. M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007). [CrossRef] [PubMed]
  23. N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012). [CrossRef] [PubMed]
  24. T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004). [CrossRef] [PubMed]
  25. N. C. Brun and G. Greisen, “Cerebrovascular responses to carbon dioxide as detected by near-infrared spectrophotometry: comparison of three different measures,” Pediatr. Res.36(1 Pt 1), 20–24 (1994). [CrossRef] [PubMed]
  26. J. Jopling, E. Henry, S. E. Wiedmeier, and R. D. Christensen, “Reference Ranges for Hematocrit and Blood Hemoglobin Concentration During the Neonatal Period: Data From a Multihospital Health Care System,” Pediatrics123(2), e333–e337 (2009). [PubMed]
  27. S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995). [CrossRef]
  28. D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE3597, 618–631 (1999). [CrossRef]
  29. C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt.16(9), 097004 (2011). [CrossRef] [PubMed]
  30. S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher, and P. Maire, “The Hill equation: a review of its capabilities in pharmacological modelling,” Fundam. Clin. Pharmacol.22(6), 633–648 (2008). [CrossRef] [PubMed]
  31. A. J. Metz, M. Biallas, C. Jenny, T. Muehlemann, and M. Wolf, “The effect of basic assumptions on the tissue oxygen saturation value of near infrared spectroscopy,” Adv. Exp. Med. Biol.765, 169–175 (2013). [CrossRef] [PubMed]
  32. D. Wallace, B. Barbieri, and S. R. Hintz, “Neonatal cerebral oxygenation measurements and the effects of curvature on frequncy domain multiple distance near infrared spectroscopy,” in Biomedical Optical Spectroscopy and Diagnostics, T. Li, ed., Vol. 38 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), paper SuF1. http://www.opticsinfobase.org/abstract.cfm?URI=BOSD-2000-SuF1
  33. A. Cerussi, J. Maier, S. Fantini, M. A. Franceschini, and E. Gratton, The Frequency-Domain Multi-Distance Method in the Presence of Curved Boundaries,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), paper AP9. http://www.opticsinfobase.org/abstract.cfm?URI=BOSD-1996-AP9
  34. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem.37(9), 1633–1638 (1991). [PubMed]
  35. P. Swietach, T. Tiffert, J. M. A. Mauritz, R. Seear, A. Esposito, C. F. Kaminski, V. L. Lew, and R. D. Vaughan-Jones, “Hydrogen ion dynamics in human red blood cells,” J. Physiol.588(Pt 24), 4995–5014 (2010). [CrossRef] [PubMed]
  36. J. F. Hoffman and S. Inoué, “Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and Amphiuma red blood cells,” Proc. Natl. Acad. Sci. U.S.A.103(8), 2971–2976 (2006). [CrossRef] [PubMed]
  37. D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005). [CrossRef] [PubMed]
  38. P. E. Bickler, J. R. Feiner, H. Eilers, and M. Rollins, “Performance of 5 Cerebral Oximeters During Hypoxia in Healthy Volunteers,” presented at the American Society of Anesthesiologists Annual Meeting Poster session, Chicago, Illinois, US, 15 - 19 Oct., 2011.
  39. A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth.13(5), 384–391 (2003). [CrossRef] [PubMed]
  40. M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia57(10), 999–1006 (2002). [CrossRef] [PubMed]
  41. K. Yoshitani, M. Kawaguchi, K. Tatsumi, K. Kitaguchi, and H. Furuya, “A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers,” Anesth Analg 94, 586–90; table of contents (2002). [CrossRef]
  42. M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt.16(5), 057004 (2011). [CrossRef] [PubMed]
  43. N. Morris, G. Pichler, M. Pocivalnik, A. Brandner, W. Müller, and B. Urlesberger, “Cerebral regional oxygen saturation (crSO2): are different sensors comparable?” Paediatr. Anaesth.no (2012). [CrossRef] [PubMed]
  44. G. D. Lewis and H. F. Stoddart, “Method and Appartus for in vivo Optical Spectroscopic Examination,” U.S. patent US5139025 (August 18, 1992).
  45. G. D. Lewis, W. P. Messing, and M. C. Stewart, “Optical Cerebral Oximeter,” U.S. patent US5902235 (May 11, 1999).
  46. R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput.17(7-8), 385–391 (2002). [CrossRef] [PubMed]
  47. S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm,” Biomed. Opt. Express2(11), 3047–3057 (2011). [CrossRef] [PubMed]
  48. A. Denault, A. Deschamps, and J. M. Murkin, “A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy,” Semin. Cardiothorac. Vasc. Anesth.11(4), 274–281 (2007). [PubMed]
  49. J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited