OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1683–1691

Dark-field circular depolarization optical coherence microscopy

Kalpesh Mehta, Pengfei Zhang, Eugenia Li Ling Yeo, James Chen Yong Kah, and Nanguang Chen  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 9, pp. 1683-1691 (2013)
http://dx.doi.org/10.1364/BOE.4.001683


View Full Text Article

Enhanced HTML    Acrobat PDF (2040 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence microscopy (OCM) is a widely used structural imaging modality. To extend its application in molecular imaging, gold nanorods are widely used as contrast agents for OCM. However, they very often offer limited sensitivity as a result of poor signal to background ratio. Here we experimentally demonstrate that a novel OCM implementation based on dark-field circular depolarization detection can efficiently detect circularly depolarized signal from gold nanorods and at the same time efficiently suppress the background signals. This results into a significant improvement in signal to background ratio.

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(180.3170) Microscopy : Interference microscopy
(290.5850) Scattering : Scattering, particles
(290.5855) Scattering : Scattering, polarization

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: June 17, 2013
Revised Manuscript: August 6, 2013
Manuscript Accepted: August 8, 2013
Published: August 19, 2013

Virtual Issues
Novel Techniques in Microscopy (2013) Biomedical Optics Express

Citation
Kalpesh Mehta, Pengfei Zhang, Eugenia Li Ling Yeo, James Chen Yong Kah, and Nanguang Chen, "Dark-field circular depolarization optical coherence microscopy," Biomed. Opt. Express 4, 1683-1691 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-9-1683


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19(8), 590–592 (1994). [CrossRef] [PubMed]
  2. J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface Imaging of Living Skin with Optical Coherence Microscopy,” Dermatology (Basel)191(2), 93–98 (1995). [CrossRef] [PubMed]
  3. J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000). [CrossRef] [PubMed]
  4. S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt.10(4), 041208 (2005). [CrossRef] [PubMed]
  5. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater.21(48), 4880–4910 (2009). [CrossRef]
  6. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  7. S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007). [CrossRef] [PubMed]
  8. A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev.3(1-2), 146–158 (2009). [CrossRef]
  9. J. C. Y. Kah, M. Olivo, T. H. Chow, K. S. Song, K. Z. Y. Koh, S. Mhaisalkar, and C. J. R. Sheppard, “Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo,” J. Biomed. Opt.14, 054015 (2009).
  10. M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett.35(20), 3489–3491 (2010). [CrossRef] [PubMed]
  11. A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express13(17), 6597–6614 (2005). [CrossRef] [PubMed]
  12. H.-M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars with Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano4(9), 5163–5173 (2010). [CrossRef] [PubMed]
  13. J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express3(11), 2881–2895 (2012). [CrossRef] [PubMed]
  14. K. B. Mehta and N. Chen, “Plasmonic chiral contrast agents for optical coherence tomography: numerical study,” Opt. Express19(16), 14903–14912 (2011). [CrossRef] [PubMed]
  15. C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express20(19), 21385–21399 (2012). [CrossRef] [PubMed]
  16. B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Observation of Extra-High Depolarized Light Scattering Spectra from Gold Nanorods,” J. Phys. Chem. C112(33), 12760–12768 (2008). [CrossRef]
  17. B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Tunable depolarized light scattering from gold and gold/silver nanorods,” Phys. Chem. Chem. Phys.12(13), 3210–3218 (2010). [CrossRef] [PubMed]
  18. J. Aaron, E. de la Rosa, K. Travis, N. Harrison, J. Burt, M. José-Yacamán, and K. Sokolov, “Polarization microscopy with stellated gold nanoparticles for robust monitoring of molecular assemblies and single biomolecules,” Opt. Express16(3), 2153–2167 (2008). [CrossRef] [PubMed]
  19. M. Villiger, C. Pache, R. A. Leitgeb, and T. Lasser, “Coherent transfer functions and extended depth of field,” in BiOS, J. A. Izatt, J. G. Fujimoto, and V. V. Tuchin, eds. (International Society for Optics and Photonics, 2010), pp. 755417–755417–5.
  20. W. Gong, K. Si, and C. J. R. Sheppard, “Optimization of axial resolution in a confocal microscope with D-shaped apertures,” Appl. Opt.48(20), 3998–4002 (2009). [CrossRef] [PubMed]
  21. P. Török, Z. Laczik, and C. J. Sheppard, “Effect of half-stop lateral misalignment on imaging of dark-field and stereoscopic confocal microscopes,” Appl. Opt.35(34), 6732–6735 (1996). [CrossRef] [PubMed]
  22. Y. Chen, L. Otis, and Q. Zhu, “Polarization memory effect in optical coherence tomography and dental imaging application,” J. Biomed. Opt.16(8), 086005 (2011). [CrossRef] [PubMed]
  23. P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51(30), 7176–7182 (2012). [CrossRef] [PubMed]
  24. Gold nanorods 10 nm diameter, absorption/850 nm, dispersion in H2O | Sigma-Aldrich,” http://www.sigmaaldrich.com/catalog/product/aldrich/716839?lang=en&region=SG .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited