OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1692–1701

Automated bacterial identification by angle resolved dark-field imaging

Benjamin K. Wilson and Genevieve D. Vigil  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 9, pp. 1692-1701 (2013)
http://dx.doi.org/10.1364/BOE.4.001692


View Full Text Article

Enhanced HTML    Acrobat PDF (4265 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a dark-field imaging technique capable of automated identification of individual bacteria. An 87-channel multispectral system capable of angular and spectral resolution was used to measure the scattering spectrum of various bacteria in culture smears. Spectra were compared between various species and between various preparations of the same species. A 15-channel system was then used to prove the viability of bacterial identification with a relatively simple microscope system. A simple classifier was able to identify four of six bacterial species with greater than 90% accuracy in bacteria-by-bacteria testing.

© 2013 Optical Society of America

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(290.5820) Scattering : Scattering measurements

ToC Category:
Microscopy

History
Original Manuscript: June 17, 2013
Revised Manuscript: August 14, 2013
Manuscript Accepted: August 15, 2013
Published: August 20, 2013

Virtual Issues
Bio-Optics: Design and Applications (2013) Biomedical Optics Express

Citation
Benjamin K. Wilson and Genevieve D. Vigil, "Automated bacterial identification by angle resolved dark-field imaging," Biomed. Opt. Express 4, 1692-1701 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-9-1692


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. International Union against Tuberculosis and Disease, “Priorities for tuberculosis bacteriology services in low income countries,” (2007).
  2. The New Diagnostics Working Group of the Stop TB Partnership, “Pathways to better diagnostics for tuberculosis” (2009).
  3. P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7(10), 1879–1896 (1968). [CrossRef] [PubMed]
  4. P. J. Wyatt, D. T. Phillips, “Structure of single bacteria from light scattering,” J. Theor. Biol. 37(3), 493–501 (1972). [CrossRef] [PubMed]
  5. M. Bartholdi, G. C. Salzman, R. D. Hiebert, M. Kerker, “Differential light scattering photometer for rapid analysis of single particles in flow,” Appl. Opt. 19(10), 1573–1581 (1980). [CrossRef] [PubMed]
  6. M. R. Loken, R. G. Sweet, L. A. Herzenberg, “Cell discrimination by multiangle light scattering,” J. Histochem. Cytochem. 24(1), 284–291 (1976). [CrossRef] [PubMed]
  7. M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27(1), 250–263 (1979). [CrossRef] [PubMed]
  8. P. F. Mullaney, P. N. Dean, “Cell sizing: a small-angle light-scattering method for sizing particles of low relative refractive index,” Appl. Opt. 8(11), 2361–2362 (1969). [CrossRef] [PubMed]
  9. V. J. Morris, B. R. Jennings, “Light scattering by bacteria. I. Angular dependence of the scattered intensity,” Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 338(1613), 197–208 (1974). [CrossRef]
  10. B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada, E. D. Hirleman, T. Lary, J. P. Robinson, “Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier,” Cytometry A 73(4), 369–379 (2008). [CrossRef] [PubMed]
  11. G. A. Jamjoom, “Dark-field microscopy for detection of malaria in unstained blood films,” J. Clin. Microbiol. 17(5), 717–721 (1983). [PubMed]
  12. B. K. Wilson, M. R. Behrend, M. P. Horning, M. C. Hegg, “Detection of malarial byproduct hemozoin utilizing its unique scattering properties,” Opt. Express 19(13), 12190–12196 (2011). [CrossRef] [PubMed]
  13. S. A. Larsen, B. M. Steiner, A. H. Rudolph, S. A. Larsen, and B. M. Steiner, “Laboratory diagnosis and interpretation of tests for syphilis,” Clin. Microbio. Rev. 8, (1995).
  14. R. M. Macnab, “Examination of bacterial flagellation by dark-field examination of bacterial flagellation by dark-field microscopy,” J. Clin. Microbiol.4, (1976).
  15. K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011). [CrossRef] [PubMed]
  16. J. Aaron, K. Travis, N. Harrison, K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009). [CrossRef] [PubMed]
  17. J. R. Erb-Downward, D. L. Thompson, M. K. Han, C. M. Freeman, L. McCloskey, L. A. Schmidt, V. B. Young, G. B. Toews, J. L. Curtis, B. Sundaram, F. J. Martinez, G. B. Huffnagle, “Analysis of the lung microbiome in the “healthy” smoker and in COPD,” PLoS ONE 6(2), e16384 (2011). [CrossRef] [PubMed]
  18. A. Pye, S. L. Hill, P. Bharadwa, R. A. Stockley, “Effect of storage and postage on recovery and quantitation of bacteria in sputum samples,” J. Clin. Pathol. 61(3), 352–354 (2007). [CrossRef] [PubMed]
  19. P. W. Monroe, H. G. Muchmore, F. G. Felton, J. K. Pirtle, “Quantitation of microorganisms in sputum,” Appl. Microbiol. 18(2), 214–220 (1969). [PubMed]
  20. UNICEF, WHO, “Pneumonia: the forgotten killer of children,” (2006).
  21. M. G. Forero, F. Sroubek, G. Cristóbal, “Identification of tuberculosis bacteria based on shape and color,” Real-Time Imag. 10(4), 251–262 (2004). [CrossRef]
  22. P. Sadaphal, J. Rao, G. W. Comstock, M. F. Beg, “Image processing techniques for identifying Mycobacterium tuberculosis in Ziehl-Neelsen stains,” Int. J. Tuberc. Lung Dis. 12(5), 579–582 (2008). [PubMed]
  23. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing using MATLAB: 2nd Ed. (Gatesmark Publishing 2009), Chap, 13.
  24. H. F. Grahan and P. Geladi, Techniques and Applications of Hyperspectral Image Analysis (John Wiley and Sons, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited