OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1702–1709

Real time in vivo investigation of superoxide dynamics in zebrafish liver using a single-fiber fluorescent probe

Yu-Chung Chang, Chuian-Fu Ken, Che-Wei Hsu, and Ya-Ging Liu  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 9, pp. 1702-1709 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2812 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Superoxide anion is the key radical that causes intracellular oxidative stress. The lack of a method to directly monitor superoxide concentration in vivo in real time has severely hindered our understanding on its pathophysiology. We made transgenic zebrafish to specifically express yellow fluorescent proteins, a reversible superoxide-specific indicator, in the liver and used a fiber-optic fluorescent probe to noninvasively monitor the superoxide concentration in real time. Several superoxide-inducing and scavenging reagents were administrated onto the fish to alter superoxide concentrations. The distinct biochemical pathways of the reagents can be discerned from the transient behaviors of fluorescence time courses. These results demonstrate the feasibility of this method for analyzing superoxide dynamics and its potential as an in vivo pharmaceutical screening platform.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: June 21, 2013
Revised Manuscript: August 16, 2013
Manuscript Accepted: August 16, 2013
Published: August 21, 2013

Yu-Chung Chang, Chuian-Fu Ken, Che-Wei Hsu, and Ya-Ging Liu, "Real time in vivo investigation of superoxide dynamics in zebrafish liver using a single-fiber fluorescent probe," Biomed. Opt. Express 4, 1702-1709 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. A. Sena and N. S. Chandel, “Physiological roles of mitochondrial reactive oxygen species,” Mol. Cell48(2), 158–167 (2012). [CrossRef] [PubMed]
  2. P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu, “Calcium, ATP, and ROS: a mitochondrial love-hate triangle,” Am. J. Physiol. Cell Physiol.287(4), C817–C833 (2004). [CrossRef] [PubMed]
  3. V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997). [CrossRef] [PubMed]
  4. M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology122(2), 366–375 (2002). [CrossRef] [PubMed]
  5. L. Wei and R. T. Dirksen, “Perspectives on: SGP symposium on mitochondrial physiology and medicine: mitochondrial superoxide flashes: from discovery to new controversies,” J. Gen. Physiol.139(6), 425–434 (2012). [CrossRef] [PubMed]
  6. F. L. Muller, “A critical evaluation of cpYFP as a probe for superoxide,” Free Radic. Biol. Med.47(12), 1779–1780 (2009). [CrossRef] [PubMed]
  7. M. M. Tarpey, D. A. Wink, and M. B. Grisham, “Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations,” Am. J. Physiol. Regul. Integr. Comp. Physiol.286(3), 431R–444R (2004). [CrossRef] [PubMed]
  8. V. Roubaud, S. Sankarapandi, P. Kuppusamy, P. Tordo, and J. L. Zweier, “Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide,” Anal. Biochem.247(2), 404–411 (1997). [CrossRef] [PubMed]
  9. P. R. Gardner, “Aconitase: sensitive target and measure of superoxide,” Methods Enzymol.349, 9–23 (2002). [CrossRef] [PubMed]
  10. J. Zielonka, J. Vasquez-Vivar, and B. Kalyanaraman, “Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine,” Nat. Protoc.3(1), 8–21 (2008). [CrossRef] [PubMed]
  11. M. Wrona, K. B. Patel, and P. Wardman, “The roles of thiol-derived radicals in the use of 2′,7′-dichlorodihydrofluorescein as a probe for oxidative stress,” Free Radic. Biol. Med.44(1), 56–62 (2008). [CrossRef] [PubMed]
  12. S. I. Liochev and I. Fridovich, “Lucigenin as mediator of superoxide production: revisited,” Free Radic. Biol. Med.25(8), 926–928 (1998). [CrossRef] [PubMed]
  13. R. H. Fabian, D. S. DeWitt, and T. A. Kent, “In Vivo Detection of Superoxide Anion Production by the Brain Using a Cytochrome Electrode,” J. Cereb. Blood Flow Metab.15(2), 242–247 (1995). [CrossRef] [PubMed]
  14. M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009). [CrossRef] [PubMed]
  15. T. Nagai, A. Sawano, E. S. Park, and A. Miyawaki, “Circularly permuted green fluorescent proteins engineered to sense Ca2+,” Proc. Natl. Acad. Sci. U.S.A.98(6), 3197–3202 (2001). [CrossRef] [PubMed]
  16. W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008). [CrossRef] [PubMed]
  17. G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet.8(5), 353–367 (2007). [CrossRef] [PubMed]
  18. Y. Zeng, J. Xu, D. Li, L. Li, Z. Wen, and J. Y. Qu, “Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging,” Opt. Lett.37(13), 2490–2492 (2012). [CrossRef] [PubMed]
  19. K. Hama, E. Provost, T. C. Baranowski, A. L. Rubinstein, J. L. Anderson, S. D. Leach, and S. A. Farber, “In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters,” Am. J. Physiol. Gastrointest. Liver Physiol.296(2), G445–G453 (2008). [CrossRef] [PubMed]
  20. Y. H. Li, M. H. Chen, H. Y. Gong, S. Y. Hu, Y. W. Li, G. H. Lin, C. C. Lin, W. Liu, and J. L. Wu, “Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish,” J. Biol. Chem.285(52), 41001–41009 (2010). [CrossRef] [PubMed]
  21. L. J. Chen, C. C. Hsu, J. R. Hong, L. K. Jou, H. C. Tseng, J. L. Wu, Y. C. Liou, and G. M. Her, “Liver-specific expression of p53-negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish,” Dev. Dyn.237(4), 1070–1081 (2008). [CrossRef] [PubMed]
  22. W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012). [CrossRef] [PubMed]
  23. R. D. Rekha, A. A. Amali, G. M. Her, Y. H. Yeh, H. Y. Gong, S. Y. Hu, G. H. Lin, and J. L. Wu, “Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio,” Toxicology243(1-2), 11–22 (2008). [CrossRef] [PubMed]
  24. M. Korenaga, T. Wang, Y. Li, L. A. Showalter, T. Chan, J. Sun, and S. A. Weinman, “Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production,” J. Biol. Chem.280(45), 37481–37488 (2005). [CrossRef] [PubMed]
  25. T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker, “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt.13(1), 014024 (2008). [CrossRef] [PubMed]
  26. T. P. Thomas, Y. C. Chang, J. Y. Ye, A. Kotlyar, Z. Cao, R. Shukla, S. Qin, T. B. Norris, and J. R. Baker., “Optical fiber-based in vivo quantification of growth factor receptors,” Cancer118(8), 2148–2156 (2012). [CrossRef] [PubMed]
  27. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003). [CrossRef] [PubMed]
  28. J. Y. Ye, M. T. Myaing, T. B. Norris, T. Thomas, and J. Baker., “Biosensing based on two-photon fluorescence measurements through optical fibers,” Opt. Lett.27(16), 1412–1414 (2002). [CrossRef] [PubMed]
  29. Y. C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, “Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber,” Opt. Express16(17), 12640–12649 (2008). [CrossRef] [PubMed]
  30. J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005). [CrossRef]
  31. M. Westerfield, The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio) (University of Oregon, Eugene, USA, 1995).
  32. J. S. Bus and J. E. Gibson, “Paraquat: model for oxidant-initiated toxicity,” Environ. Health Perspect.55, 37–46 (1984). [CrossRef] [PubMed]
  33. P. Staňková, O. Kučera, H. Lotková, T. Roušar, R. Endlicher, and Z. Cervinková, “The toxic effect of thioacetamide on rat liver in vitro,” Toxicol. In Vitro24(8), 2097–2103 (2010). [CrossRef] [PubMed]
  34. Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011). [CrossRef] [PubMed]
  35. T. Kimura and H. Nishioka, “Intracellular generation of superoxide by copper sulphate in Escherichia coli,” Mutat. Res.389(2-3), 237–242 (1997). [CrossRef] [PubMed]
  36. A. Nandi and I. Chatterjee, “Scavenging of superoxide radical by ascorbic acid,” J. Biosci.11(1-4), 435–441 (1987). [CrossRef]
  37. K. Wellington and B. Jarvis, “Silymarin: a review of its clinical properties in the management of hepatic disorders,” BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy15(7), 465–489 (2001). [CrossRef]
  38. D. R. Lloyd and D. H. Phillips, “Oxidative DNA damage mediated by copper (II), iron (II) and nickel (II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis424, 23–36 (1999).
  39. J. Widengren, A. Chmyrov, C. Eggeling, P. A. Löfdahl, and C. A. Seidel, “Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy,” J. Phys. Chem. A111(3), 429–440 (2007). [CrossRef] [PubMed]
  40. D. Han, R. Canali, D. Rettori, and N. Kaplowitz, “Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria,” Mol. Pharmacol.64(5), 1136–1144 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited