OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1710–1723

In vivo dark-field imaging of the retinal pigment epithelium cell mosaic

Drew Scoles, Yusufu N. Sulai, and Alfredo Dubra  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 9, pp. 1710-1723 (2013)
http://dx.doi.org/10.1364/BOE.4.001710


View Full Text Article

Enhanced HTML    Acrobat PDF (8462 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Non-invasive reflectance imaging of the human RPE cell mosaic is demonstrated using a modified confocal adaptive optics scanning light ophthalmoscope (AOSLO). The confocal circular aperture in front of the imaging detector was replaced with a combination of a circular aperture 4 to 16 Airy disks in diameter and an opaque filament, 1 or 3 Airy disks thick. This arrangement reveals the RPE cell mosaic by dramatically attenuating the light backscattered by the photoreceptors. The RPE cell mosaic was visualized in all 7 recruited subjects at multiple retinal locations with varying degrees of contrast and cross-talk from the photoreceptors. Various experimental settings were explored for improving the visualization of the RPE cell boundaries including: pinhole diameter, filament thickness, illumination and imaging pupil apodization, unmatched imaging and illumination focus, wavelength and polarization. None of these offered an obvious path for enhancing image contrast. The demonstrated implementation of dark-field AOSLO imaging using 790 nm light requires low light exposures relative to light safety standards and it is more comfortable for the subject than the traditional autofluorescence RPE imaging with visible light. Both these factors make RPE dark-field imaging appealing for studying mechanisms of eye disease, as well as a clinical tool for screening and monitoring disease progression.

© 2013 OSA

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(290.4210) Scattering : Multiple scattering
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

History
Original Manuscript: July 1, 2013
Revised Manuscript: August 9, 2013
Manuscript Accepted: August 14, 2013
Published: August 23, 2013

Virtual Issues
Bio-Optics: Design and Applications (2013) Biomedical Optics Express

Citation
Drew Scoles, Yusufu N. Sulai, and Alfredo Dubra, "In vivo dark-field imaging of the retinal pigment epithelium cell mosaic," Biomed. Opt. Express 4, 1710-1723 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-9-1710


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Spitznas and M. J. Hogan, “Outer segments of photoreceptors and the retinal pigment epithelium. Interrelationship in the human eye,” Arch. Ophthalmol.84(6), 810–819 (1970). [CrossRef] [PubMed]
  2. D. Bok, “Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture,” Invest. Ophthalmol. Vis. Sci.26(12), 1659–1694 (1985). [PubMed]
  3. R. H. Steinberg, “Interactions between the retinal pigment epithelium and the neural retina,” Doc. Ophthalmol.60(4), 327–346 (1985). [CrossRef] [PubMed]
  4. J. Ambati and B. J. Fowler, “Mechanisms of age-related macular degeneration,” Neuron75(1), 26–39 (2012). [CrossRef] [PubMed]
  5. R. Simó, M. Villarroel, L. Corraliza, C. Hernández, and M. Garcia-Ramírez, “The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier--implications for the pathogenesis of diabetic retinopathy,” J. Biomed. Biotechnol.2010, 190724 (2010). [CrossRef] [PubMed]
  6. L. C. Glazer and T. P. Dryja, "Understanding the etiology of Stargardt's disease," Ophthalmol. Clin. North. Am.15, 93-100 (2002).
  7. C. F. Blodi and E. M. Stone, “Best’s vitelliform dystrophy,” Ophthalmic Paediatr. Genet.11(1), 49–59 (1990). [PubMed]
  8. F. Marlhens, C. Bareil, J. M. Griffoin, E. Zrenner, P. Amalric, C. Eliaou, S. Y. Liu, E. Harris, T. M. Redmond, B. Arnaud, M. Claustres, and C. P. Hamel, “Mutations in RPE65 cause Leber’s congenital amaurosis,” Nat. Genet.17(2), 139–141 (1997). [CrossRef] [PubMed]
  9. V. C. Greenstein, T. Duncker, K. Holopigian, R. E. Carr, J. P. Greenberg, S. H. Tsang, and D. C. Hood, “Structural and functional changes associated with normal and abnormal fundus autofluorescence in patients with retinitis pigmentosa,” Retina32(2), 349–357 (2012). [CrossRef] [PubMed]
  10. S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina28(3), 385–409 (2008). [CrossRef] [PubMed]
  11. U. Kellner, S. Kellner, B. H. Weber, B. Fiebig, S. Weinitz, and K. Ruether, “Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa,” Eye (Lond.)23(6), 1349–1359 (2009). [CrossRef] [PubMed]
  12. U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina30(1), 6–15 (2010). [CrossRef] [PubMed]
  13. R. F. Spaide and C. A. Curcio, “Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model,” Retina31(8), 1609–1619 (2011). [CrossRef] [PubMed]
  14. M. Fleckenstein, P. Charbel Issa, H. M. Helb, S. Schmitz-Valckenberg, R. P. Finger, H. P. Scholl, K. U. Loeffler, and F. G. Holz, “High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.49(9), 4137–4144 (2008). [CrossRef] [PubMed]
  15. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express14(16), 7144–7158 (2006). [CrossRef] [PubMed]
  16. J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci.50(3), 1350–1359 (2008). [CrossRef] [PubMed]
  17. ANSI, "American National Standard for Safe Use of Lasers in Research, Development, or Testing," (Laser Institute of America, Orlando, FL, 2007).
  18. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A24(5), 1250–1265 (2007). [CrossRef] [PubMed]
  19. J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci.49(8), 3715–3729 (2008). [CrossRef] [PubMed]
  20. A. V. Cideciyan, S. G. Jacobson, T. S. Aleman, D. Gu, S. E. Pearce-Kelling, A. Sumaroka, G. M. Acland, and G. D. Aguirre, “In vivo dynamics of retinal injury and repair in the rhodopsin mutant dog model of human retinitis pigmentosa,” Proc. Natl. Acad. Sci. U.S.A.102(14), 5233–5238 (2005). [CrossRef] [PubMed]
  21. A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Vis. Sci.48(5), 2297–2303 (2007). [CrossRef] [PubMed]
  22. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt.26(8), 1492–1499 (1987). [CrossRef] [PubMed]
  23. A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res.36(1), 191–205 (1996). [CrossRef] [PubMed]
  24. A. Yoshida, S. Ishiko, J. Akiba, N. Kitaya, and T. Nagaoka, “Radiating retinal folds detected by scanning laser ophthalmoscopy using a diode laser in a dark-field mode in idiopathic macular holes,” Graefes Arch. Clin. Exp. Ophthalmol.236(6), 445–450 (1998). [CrossRef] [PubMed]
  25. Y. U. Shin and B. R. Lee, “Retro-mode Imaging for retinal pigment epithelium alterations in central serous chorioretinopathy,” Am. J. Ophthalmol154, 155–163 (2012).
  26. T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express3(10), 2537–2549 (2012). [CrossRef] [PubMed]
  27. R. Wayne, Light and Video Microscopy (Academic Press/Elsevier, 2009).
  28. H. Tanna, A. M. Dubis, N. Ayub, D. M. Tait, J. Rha, K. E. Stepien, and J. Carroll, “Retinal imaging using commercial broadband optical coherence tomography,” Br. J. Ophthalmol.94(3), 372–376 (2010). [CrossRef] [PubMed]
  29. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(6), 1757–1768 (2011). [CrossRef] [PubMed]
  30. Y. N. Sulai and A. Dubra, “Adaptive optics scanning ophthalmoscopy with annular pupils,” Biomed. Opt. Express3(7), 1647–1661 (2012). [CrossRef] [PubMed]
  31. W. Stiles and B. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. Lond. B Biol. Sci.112(778), 428–450 (1933). [CrossRef]
  32. A. Dubra and Z. Harvey, "Registration of 2D Images from Fast Scanning Ophthalmic Instruments," in The 4th International Workshop on Biomedical Image Registration (Springer-Verlag, 2010), 60-71. [CrossRef]
  33. R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt.33(4), 540–549 (2013). [CrossRef] [PubMed]
  34. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A24(5), 1358–1363 (2007). [CrossRef] [PubMed]
  35. R. C. Baraas, J. Carroll, K. L. Gunther, M. Chung, D. R. Williams, D. H. Foster, and M. Neitz, “Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency,” J. Opt. Soc. Am. A24(5), 1438–1447 (2007). [CrossRef] [PubMed]
  36. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011). [CrossRef] [PubMed]
  37. C. K. Dorey, G. Wu, D. Ebenstein, A. Garsd, and J. J. Weiter, “Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration,” Invest. Ophthalmol. Vis. Sci.30(8), 1691–1699 (1989). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited