OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1742–1748

A scattering phantom for observing long range order with two-dimensional angle-resolved Low-Coherence Interferometry

Steven K. Yarmoska, Sanghoon Kim, Thomas E. Matthews, and Adam Wax  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 9, pp. 1742-1748 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3920 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Angle-resolved low coherence interferometry (a/LCI) is an approach for assessing tissue structure based on light scattering data. Recent advances in a/LCI have extended the analysis to study scattering distributions in two dimensions. In order to provide suitable scattering phantoms for 2D a/LCI, we have developed phantoms based on soft lithography which can provide a range of structures including long range order. Here we characterize these phantoms and demonstrate their utility for providing standardized multi-scale structural information for light scattering measurements.

© 2013 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(290.0290) Scattering : Scattering
(290.3200) Scattering : Inverse scattering
(290.5820) Scattering : Scattering measurements

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: June 17, 2013
Revised Manuscript: July 31, 2013
Manuscript Accepted: August 2, 2013
Published: August 26, 2013

Virtual Issues
Novel Techniques in Microscopy (2013) Biomedical Optics Express

Steven K. Yarmoska, Sanghoon Kim, Thomas E. Matthews, and Adam Wax, "A scattering phantom for observing long range order with two-dimensional angle-resolved Low-Coherence Interferometry," Biomed. Opt. Express 4, 1742-1748 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J.82(4), 2256–2264 (2002). [CrossRef] [PubMed]
  2. Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt.16(1), 011003 (2011). [CrossRef] [PubMed]
  3. N. Terry, Y. Zhu, J. K. M. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt.16(10), 106002 (2011). [CrossRef] [PubMed]
  4. J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D’Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett’s esophagus by using angle-resolved low-coherence interferometry,” Gastrointest. Endosc.65(3), 487–491 (2007). [CrossRef] [PubMed]
  5. N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of Dysplasia in Barrett’s Esophagus With In Vivo Depth-Resolved Nuclear Morphology Measurements,” Gastroenterology140(1), 42–50 (2011). [CrossRef] [PubMed]
  6. J. P. Bouchard, I. Noiseux, I. Veilleux, and O. Mermut, “The role of optical tissue phantom in verification and validation of medical imaging devices,” in BioPhotonics, 2011 International Workshop on. (2011). [CrossRef]
  7. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  8. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt.36(4), 949–957 (1997). [CrossRef] [PubMed]
  9. D. Wang, Y. Chen, and J. T. C. Liu, “A liquid optical phantom with tissue-like heterogeneities for confocal microscopy,” Biomed. Opt. Express3(12), 3153–3160 (2012). [CrossRef] [PubMed]
  10. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010). [CrossRef] [PubMed]
  11. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, and V. Backman, “Low-coherent backscattering spectroscopy for tissue characterization,” Appl. Opt.44(3), 366–377 (2005). [CrossRef] [PubMed]
  12. M. Giacomelli, Y. Zhu, J. Lee, and A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express18(14), 14616–14626 (2010). [CrossRef] [PubMed]
  13. J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt.11(3), 034022 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited