OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1759–1768

Optimal control of light propagation through multiple-scattering media in the presence of noise

Hasan Yılmaz, Willem L. Vos, and Allard P. Mosk  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 9, pp. 1759-1768 (2013)
http://dx.doi.org/10.1364/BOE.4.001759


View Full Text Article

Enhanced HTML    Acrobat PDF (970 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the control of coherent light propagation through multiple-scattering media in the presence of measurement noise. In our experiments, we use a two-step optimization procedure to find the optimal incident wavefront that generates a bright focal spot behind the medium. We conclude that the control of coherent light propagation through a multiple-scattering medium is only determined by the number of photoelectrons detected per optimized segment. The prediction of our model agrees well with the experimental results. Our results offer opportunities for imaging applications through scattering media such as biological tissue in the shot noise limit.

© 2013 OSA

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(110.7050) Imaging systems : Turbid media
(290.4210) Scattering : Multiple scattering

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: June 14, 2013
Revised Manuscript: August 16, 2013
Manuscript Accepted: August 22, 2013
Published: August 28, 2013

Virtual Issues
Novel Techniques in Microscopy (2013) Biomedical Optics Express

Citation
Hasan Yılmaz, Willem L. Vos, and Allard P. Mosk, "Optimal control of light propagation through multiple-scattering media in the presence of noise," Biomed. Opt. Express 4, 1759-1768 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-9-1759


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Freund, “Looking through walls and around corners,” Physica A168, 49–65 (1990). [CrossRef]
  2. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32, 2309–2311 (2007). [CrossRef] [PubMed]
  3. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon.6, 283 (2012). [CrossRef]
  4. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett.106, 103901 (2011). [CrossRef] [PubMed]
  5. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nature Photon.5, 372–377 (2011). [CrossRef]
  6. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nature Commun.2, 447 (2011). [CrossRef]
  7. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nature Photon.4, 320–322 (2010). [CrossRef]
  8. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett.106, 193905 (2011). [CrossRef] [PubMed]
  9. J. H. Park, C. Park, H. Yu, Y. H. Cho, and Y. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express20, 17010–17016 (2012). [CrossRef]
  10. Y. F. Guan, O. Katz, E. Small, J. Y. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett.37, 4663–4665 (2012). [CrossRef] [PubMed]
  11. J. H. Park, C. Park, H. Yu, Y. Cho, and Y. H. Park, “Active spectral filtering through turbid media,” Opt. Lett.37, 3261–3263 (2012). [CrossRef] [PubMed]
  12. E. Small, O. Katz, Y. F. Guan, and Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett.37, 3429–3431 (2012). [CrossRef]
  13. Y. M. Wang, B. Judkewitz, C. H. DiMarzio, and C. A. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nature Commun.3, 928 (2012). [CrossRef]
  14. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon.6, 657–661 (2012). [CrossRef]
  15. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491, 232–234 (2012). [CrossRef] [PubMed]
  16. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281, 3071–3080 (2008). [CrossRef]
  17. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104, 100601 (2010). [CrossRef] [PubMed]
  18. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nature Photon.2, 110–115 (2008). [CrossRef]
  19. M. Cui and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express18, 3444–3455 (2010). [CrossRef] [PubMed]
  20. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express18, 12283–12290 (2010). [CrossRef] [PubMed]
  21. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express19, 4017–4029 (2011). [CrossRef] [PubMed]
  22. M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett.36, 870–872 (2011). [CrossRef] [PubMed]
  23. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express20, 4840–4849 (2012). [CrossRef] [PubMed]
  24. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20, 1733–1740 (2012). [CrossRef] [PubMed]
  25. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express20, 15086–15092 (2012). [CrossRef] [PubMed]
  26. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nature Commun.1, 81 (2010). [CrossRef]
  27. T. Weise, M. Zapf, R. Chiong, and A. J. Nebro, Nature-Inspired Algorithms for Optimisation (Springer, 2009).
  28. T. Weise, R. Chiong, and K. Tang, “Evolutionary optimization: Pitfalls and booby traps,” J. Comput. Sci.Technol.27, 907–936 (2012). [CrossRef]
  29. A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett.37, 4062–4064 (2012). [CrossRef] [PubMed]
  30. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt.47, 2076–2081 (2008). [CrossRef] [PubMed]
  31. S. A. Tretter, “Estimating the frequency of a noisy sinusoid by linear regression,” IEEE Trans. Inform. Theor.31, 832–835 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited