OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 1 — Jan. 1, 2014
  • pp: 123–135

Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging

Iliya Sigal, Raanan Gad, Antonio M. Caravaca-Aguirre, Yaaseen Atchia, Donald B. Conkey, Rafael Piestun, and Ofer Levi  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 1, pp. 123-135 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work presents, to our knowledge, the first demonstration of the Laser Speckle Contrast Imaging (LSCI) technique with extended depth of field (DOF). We employ wavefront coding on the detected beam to gain quantitative information on flow speeds through a DOF extended two-fold compared to the traditional system. We characterize the system in-vitro using controlled microfluidic experiments, and apply it in-vivo to imaging the somatosensory cortex of a rat, showing improved ability to image flow in a larger number of vessels simultaneously.

© 2013 Optical Society of America

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle
(110.7348) Imaging systems : Wavefront encoding

ToC Category:
Speckle Imaging and Diagnostics

Original Manuscript: October 9, 2013
Revised Manuscript: November 27, 2013
Manuscript Accepted: November 27, 2013
Published: December 6, 2013

Iliya Sigal, Raanan Gad, Antonio M. Caravaca-Aguirre, Yaaseen Atchia, Donald B. Conkey, Rafael Piestun, and Ofer Levi, "Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging," Biomed. Opt. Express 5, 123-135 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cerebral Blood Flow Metab.21, 195–201 (2001). [CrossRef]
  2. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15, 011109 (2010). [CrossRef] [PubMed]
  3. J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1, 174–179 (1996). [CrossRef] [PubMed]
  4. M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,”Lasers in Medical Science24, 639–651 (2009). [CrossRef]
  5. A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Comm.37, 326–330 (1981). [CrossRef]
  6. Y. Atchia, H. Levy, S. Dufour, and O. Levi, “Rapid multiexposure in vivo brain imaging system using vertical cavity surface emitting lasers as a light source,” Appl. Opt.52, C64–C71 (2013). [CrossRef] [PubMed]
  7. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A25, 2088–2094 (2008). [CrossRef]
  8. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt.44, 1823–1830 (2005). [CrossRef] [PubMed]
  9. H. Levy, D. Ringuette, and O. Levi, “Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow,” Biomed. Opt. Express3, 777–791 (2012). [CrossRef] [PubMed]
  10. Y. Atchia, H. Levy, S. Dufour, and O. Levi, “Speckle contrast at deviations from best focus in microfluidic and in vivo,” in Biomedical Optics and 3-D Imaging, (Optical Society of America, 2012), p. BTu3A.49.
  11. W. T. Cathey and E. R. Dowski, “New paradigm for imaging systems,” Appl. Opt.41, 6080–6092 (2002). [CrossRef] [PubMed]
  12. E. R. Dowski, W. T. Cathey, and S. C. Bradburn, “Aberration invariant optical/digital incoherent systems,” Optical Review3, A429–A432 (1996). [CrossRef]
  13. Q. Yang, L. Liu, and J. Sun, “Optimized phase pupil masks for extended depth of field,” Opt. Comm.272, 56–66 (2007). [CrossRef]
  14. Y. Takahashi and S. Komatsu, “Optimized free-form phase mask for extension of depth of field in wavefront-coded imaging,” Opt. Lett.33, 1515–1517 (2008). [CrossRef] [PubMed]
  15. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006).
  16. J. Breckinridge, D. Voelz, and J. B. Breckinridge, Computational Fourier Optics: A MATLAB Tutorial, Tutorial Text Series (SPIE Press, 2011).
  17. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am.66, 1145–1150 (1976). [CrossRef]
  18. B. Forster, D. Van De Ville, J. Berent, D. Sage, and M. Unser, “Complex wavelets for extended depth-of-field: A new method for the fusion of multichannel microscopy images,” Microscopy Res. Technique65, 33–42 (2004). [CrossRef]
  19. T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A28, 2108–2114 (2011). [CrossRef]
  20. T. B. Rice, S. D. Konecky, C. Owen, B. Choi, and B. J. Tromberg, “Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging,” Biomed. Opt. Express3, 1340–1349 (2012). [CrossRef] [PubMed]
  21. G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix psf microscopy with application to 3d photo-activation localization imaging,” Biomed. Opt. Express2, 3010–3020 (2011). [CrossRef] [PubMed]
  22. P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt.16, 090502 (2011). [CrossRef] [PubMed]
  23. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20, 1733–1740 (2012). [CrossRef] [PubMed]
  24. S. Quirin and R. Piestun, “Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions,” Appl. Opt.52, A367–A376 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited