OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 1 — Jan. 1, 2014
  • pp: 158–166

Label-free multimodal nonlinear optical microscopy reveals fundamental insights of skeletal muscle development

Qiqi Sun, Yanfeng Li, Sicong He, Chenghao Situ, Zhenguo Wu, and Jianan Y. Qu  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 1, pp. 158-166 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3595 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a label-free nonlinear optical (NLO) microscope integrating the stimulated Raman scattering, multi-color two-photon excited fluorescence and second harmonic generation. The system produces multimodal images of protein content, mitochondria distribution and sarcomere structure of fresh muscle samples. With the advanced imaging technique, we studied the mal-development of skeletal muscle caused by sarcomeric gene deficiency. In addition, important development processes of normal muscle from neonatal to adult stage were also clearly revealed based on the changing sarcomere structure, mitochondria distribution and muscle fiber size. The results demonstrate that the newly developed multimodal NLO microscope is a powerful tool to assess the muscle integrity and function.

© 2013 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6930) Medical optics and biotechnology : Tissue
(290.5910) Scattering : Scattering, stimulated Raman
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: October 25, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: December 6, 2013
Published: December 10, 2013

Qiqi Sun, Yanfeng Li, Sicong He, Chenghao Situ, Zhenguo Wu, and Jianan Y. Qu, "Label-free multimodal nonlinear optical microscopy reveals fundamental insights of skeletal muscle development," Biomed. Opt. Express 5, 158-166 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. K. Griendling, J. A. Hill, and E. N. Olson, Muscle: fundamental biology and mechanisms of disease (Elsevier Science, 2012).
  2. K. Schuster-Gossler, R. Cordes, and A. Gossler, “Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants,” Proc. Natl. Acad. Sci. U.S.A.104(2), 537–542 (2007). [CrossRef] [PubMed]
  3. R. T. Dirksen, “Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle,” Appl. Physiol. Nutr. Metab.34(3), 389–395 (2009). [CrossRef] [PubMed]
  4. S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008). [CrossRef] [PubMed]
  5. R. F. E. Crang and K. L. Klomparens, Artifacts in biological electron microscopy (Plenum Press, 1988).
  6. H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express17(3), 1282–1290 (2009). [CrossRef] [PubMed]
  7. J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt.16(11), 116024 (2011). [CrossRef] [PubMed]
  8. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J.90(2), 693–703 (2006). [CrossRef] [PubMed]
  9. D. Li, W. Zheng, and J. Y. Qu, “Imaging of epithelial tissue in vivo based on excitation of multiple endogenous nonlinear optical signals,” Opt. Lett.34(18), 2853–2855 (2009). [CrossRef] [PubMed]
  10. P. B. Conibear, A. Málnási-Csizmadia, and C. R. Bagshaw, “The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling,” Biochemistry43(49), 15404–15417 (2004). [CrossRef] [PubMed]
  11. C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Imaging skeletal muscle using second harmonic generation and coherent anti-Stokes Raman scattering microscopy,” Biomed. Opt. Express2(5), 1366–1376 (2011). [CrossRef] [PubMed]
  12. C. Brackmann, B. Gabrielsson, F. Svedberg, A. Holmaang, A. S. Sandberg, and A. Enejder, “Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets,” J. Biomed. Opt.15(6), 066008 (2010). [CrossRef] [PubMed]
  13. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  14. D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B117(16), 4634–4640 (2013). [CrossRef] [PubMed]
  15. E. C. Rothstein, S. Carroll, C. A. Combs, P. D. Jobsis, and R. S. Balaban, “Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo: topology and optical inner filters,” Biophys. J.88(3), 2165–2176 (2005). [CrossRef] [PubMed]
  16. P. Rochard, A. Rodier, F. Casas, I. Cassar-Malek, S. Marchal-Victorion, L. Daury, C. Wrutniak, and G. Cabello, “Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors,” J. Biol. Chem.275(4), 2733–2744 (2000). [CrossRef] [PubMed]
  17. D. Frank, C. Kuhn, H. A. Katus, and N. Frey, “The sarcomeric Z-disc: a nodal point in signalling and disease,” J. Mol. Med.84(6), 446–468 (2006). [CrossRef] [PubMed]
  18. I. Dalkilic, J. Schienda, T. G. Thompson, and L. M. Kunkel, “Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure,” Mol. Cell. Biol.26(17), 6522–6534 (2006). [CrossRef] [PubMed]
  19. Q. Zhou, P. H. Chu, C. Huang, C. F. Cheng, M. E. Martone, G. Knoll, G. D. Shelton, S. Evans, and J. Chen, “Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy,” J. Cell Biol.155(4), 605–612 (2001). [CrossRef] [PubMed]
  20. V. Dubowitz, “Enzyme histochemistry of skeletal muscle,” J. Neurol. Neurosurg. Psychiatry28(6), 516–524 (1965). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited