OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 1 — Jan. 1, 2014
  • pp: 167–182

Dual-band Fourier domain optical coherence tomography with depth-related compensations

Miao Zhang, Lixin Ma, and Ping Yu  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 1, pp. 167-182 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dual-band Fourier domain optical coherence tomography (FD-OCT) provides depth-resolved spectroscopic imaging that enhances tissue contrast and reduces image speckle. However, previous dual-band FD-OCT systems could not correctly give the tissue spectroscopic contrast due to depth-related discrepancy in the imaging method and attenuation in biological tissue samples. We designed a new dual-band full-range FD-OCT imaging system and developed an algorithm to compensate depth-related fall-off and light attenuation. In our imaging system, the images from two wavelength bands were intrinsically overlapped and their intensities were balanced. The processing time of dual-band OCT image reconstruction and depth-related compensations were minimized by using multiple threads that execute in parallel. Using the newly developed system, we studied tissue phantoms and human cancer xenografts and muscle tissues dissected from severely compromised immune deficient mice. Improved spectroscopic contrast and sensitivity were achieved, benefiting from the depth-related compensations.

© 2013 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Optical Coherence Tomography

Original Manuscript: October 31, 2013
Revised Manuscript: December 5, 2013
Manuscript Accepted: December 6, 2013
Published: December 10, 2013

Miao Zhang, Lixin Ma, and Ping Yu, "Dual-band Fourier domain optical coherence tomography with depth-related compensations," Biomed. Opt. Express 5, 167-182 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001). [CrossRef] [PubMed]
  3. K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8(3), 570–575 (2003). [CrossRef] [PubMed]
  4. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express17(22), 19486–19500 (2009). [CrossRef] [PubMed]
  5. S. Kray, F. Spöler, M. Först, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett.34(13), 1970–1972 (2009). [CrossRef] [PubMed]
  6. X. Zhang, J. Hu, R. W. Knighton, X.-R. Huang, C. A. Puliafito, and S. Jiao, “Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer,” Opt. Express19(20), 19653–19659 (2011). [CrossRef] [PubMed]
  7. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  8. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  9. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003). [CrossRef] [PubMed]
  10. S. Kray, M. Lenz, F. Spöler, and H. Kurz, “Increased tissue contrast by high resolution simultaneous dual-band optical coherence tomography in three dimensions,” in Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2011), 809209.
  11. Z. Hu, Y. Pan, and A. M. Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,” Appl. Opt.46(35), 8499–8505 (2007). [CrossRef] [PubMed]
  12. Acquiring from GigE Vision Cameras with Vision Acquisition Software”, retrieved http://www.ni.com/white-paper/5651/en .
  13. G. Lamouche, C. E. Bisaillon, S. Vergnole, and J. P. Monchalin, “On the speckle size in optical coherence tomography,” in Proc. SPIE 6847, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII, 2008), 684724–684726.
  14. H. Lin and P. Yu, “Speckle mechanism in holographic optical imaging,” Opt. Express15(25), 16322–16327 (2007). [CrossRef] [PubMed]
  15. Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, and G. Shi, “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett.34(12), 1849–1851 (2009). [CrossRef] [PubMed]
  16. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B17(10), 1795–1802 (2000). [CrossRef]
  17. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004). [CrossRef] [PubMed]
  18. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt.45(8), 1861–1865 (2006). [CrossRef] [PubMed]
  19. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express15(20), 13375–13387 (2007). [CrossRef] [PubMed]
  20. M. Zhang, P. Yu, and L. Ma, “Removal of Mirror Image Using Reference Beam Phase Modulation in Dual-Band Fourier-Domain Optical Coherence Tomography,” in OSA Technical Digest (online) (Optical Society of America, 2012), JTh3J.5.
  21. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express16(12), 8406–8420 (2008). [CrossRef] [PubMed]
  22. R. K. Wang, “Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning,” Phys. Med. Biol.52(19), 5897–5907 (2007). [CrossRef] [PubMed]
  23. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A24(7), 1901–1910 (2007). [CrossRef] [PubMed]
  24. K. K. H. Chan and S. Tang, “High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform,” Biomed. Opt. Express1(5), 1309–1319 (2010). [CrossRef] [PubMed]
  25. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electronics26(12), 2166–2185 (1990). [CrossRef]
  26. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994). [CrossRef] [PubMed]
  27. A. Hojjatoleslami and M. R. N. Avanaki, “OCT skin image enhancement through attenuation compensation,” Appl. Opt.51(21), 4927–4935 (2012). [CrossRef] [PubMed]
  28. M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011). [CrossRef] [PubMed]
  29. M. R. Arnfield, J. Tulip, and M. S. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng.35(5), 372–381 (1988). [CrossRef] [PubMed]
  30. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A.109(19), 7175–7180 (2012). [CrossRef] [PubMed]
  31. V.-F. Duma, K. S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt.50(29), 5735–5749 (2011). [CrossRef] [PubMed]
  32. K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010). [CrossRef] [PubMed]
  33. X. Li, G. Shi, and Y. Zhang, “High-speed optical coherence tomography signal processing on GPU,” J. Phys. Conf. Ser.277, 012019 (2011). [CrossRef]
  34. Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt.17(5), 050503 (2012). [CrossRef] [PubMed]
  35. Y. Wang, C. M. Oh, M. C. Oliveira, M. S. Islam, A. Ortega, and B. H. Park, “GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm,” Opt. Express20(14), 14797–14813 (2012). [CrossRef] [PubMed]
  36. L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007). [PubMed]
  37. A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009). [CrossRef] [PubMed]
  38. F. J. van der Meer, D. J. Faber, M. C. Aalders, A. A. Poot, I. Vermes, and T. G. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25(2), 259–267 (2010). [CrossRef] [PubMed]
  39. X. Li, J. C. Ranasinghesagara, and G. Yao, “Polarization-sensitive reflectance imaging in skeletal muscle,” Opt. Express16(13), 9927–9935 (2008). [CrossRef] [PubMed]
  40. H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express18(14), 15104–15112 (2010). [CrossRef] [PubMed]
  41. Y. Mao, S. Chang, E. Murdock, and C. Flueraru, “Simultaneous dual-wavelength-band common-path swept-source optical coherence tomography with single polygon mirror scanner,” Opt. Lett.36(11), 1990–1992 (2011). [CrossRef] [PubMed]
  42. R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-Band Time-Multiplexing Swept-Source Optical Coherence Tomography Based on Optical Parametric Amplification,” IEEE J. Sel. Top. Quantum Electron.18(4), 1287–1292 (2012). [CrossRef]
  43. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature452(7187), 580–589 (2008). [CrossRef] [PubMed]
  44. Q.-Y. Cai, P. Yu, C. Besch-Williford, C. J. Smith, G. L. Sieckman, T. J. Hoffman, and L. Ma, “Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases,” Prostate73(8), 842–854 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited