OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 1 — Jan. 1, 2014
  • pp: 233–243

Imaging and modeling collagen architecture from the nano to micro scale

Cameron P. Brown, Marie-Andree Houle, Konstantin Popov, Mischa Nicklaus, Charles-Andre Couture, Matthieu Laliberté, Thomas Brabec, Andreas Ruediger, Andrew J. Carr, Andrew J. Price, Harinderjit S. Gill, Lora Ramunno, and Francois Légaré  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 1, pp. 233-243 (2014)
http://dx.doi.org/10.1364/BOE.5.000233


View Full Text Article

Enhanced HTML    Acrobat PDF (3340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The collagen meshwork plays a central role in the functioning of a range of tissues including cartilage, tendon, arteries, skin, bone and ligament. Because of its importance in function, it is of considerable interest for studying development, disease and regeneration processes. Here, we have used second harmonic generation (SHG) to image human tissues on the hundreds of micron scale, and developed a numerical model to quantitatively interpret the images in terms of the underlying collagen structure on the tens to hundreds of nanometer scale. Focusing on osteoarthritic changes in cartilage, we have demonstrated that this combination of polarized SHG imaging and numerical modeling can estimate fibril diameter, filling fraction, orientation and bundling. This extends SHG microscopy from a qualitative to quantitative imaging technique, providing a label-free and non-destructive platform for characterizing the extracellular matrix that can expand our understanding of the structural mechanisms in disease.

© 2013 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Microscopy

History
Original Manuscript: September 24, 2013
Revised Manuscript: November 18, 2013
Manuscript Accepted: November 18, 2013
Published: December 16, 2013

Citation
Cameron P. Brown, Marie-Andree Houle, Konstantin Popov, Mischa Nicklaus, Charles-Andre Couture, Matthieu Laliberté, Thomas Brabec, Andreas Ruediger, Andrew J. Carr, Andrew J. Price, Harinderjit S. Gill, Lora Ramunno, and Francois Légaré, "Imaging and modeling collagen architecture from the nano to micro scale," Biomed. Opt. Express 5, 233-243 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-1-233


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. I. Maroudas, “Balance between swelling pressure and collagen tension in normal and degenerate cartilage,” Nature260(5554), 808–809 (1976). [CrossRef] [PubMed]
  2. K. D. Brandt, M. Doherty, and L. S. Lohmander, “Introduction: the concept of osteoarthritis as failure of the diarthrodal joint,” in Osteoarthritis, K. D. Brandt, M. Doherty, and L. S. Lohmander, eds. (Oxford University Press, Oxford, 2003), pp. 69–72.
  3. J. A. Buckwalter and H. J. Mankin, “Articular cartilage, part II: degeneration and osteoarthritis, repair, regeneration, and transplantation,” J. Bone Jt. Surg.79-A, 612–633 (1997).
  4. N. D. Broom, “The collagen framework of articular cartilage: its profound influence on normal and abnormal load-bearing function,” in Collagen, M. E. Nimni, ed. (CRC Press, Boca Raton, 1988), pp. 244–264.
  5. N. D. Broom and H. Silyn-Roberts, “Collagen-collagen versus collagen-proteoglycan interactions in the determination of cartilage strength,” Arthritis Rheum.33, 1512–1517 (1990). [CrossRef] [PubMed]
  6. E. B. Hunziker, “Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects,” Osteoarthritis Cartilage10(6), 432–463 (2002). [CrossRef] [PubMed]
  7. C. P. Brown, M.-A. Houle, M. Chen, A. J. Price, F. Légaré, and H. S. Gill, “Damage initiation and progression in the cartilage surface probed by nonlinear optical microscopy,” J. Mech. Behav. Biomed. Mater.5(1), 62–70 (2012). [CrossRef] [PubMed]
  8. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological Tissues,” Biophys. J.82(1), 493–508 (2002). [CrossRef] [PubMed]
  9. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003). [CrossRef] [PubMed]
  10. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J.50(4), 693–712 (1986). [CrossRef] [PubMed]
  11. S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys.70(4), 1637–1643 (1979). [CrossRef]
  12. X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012). [PubMed]
  13. J. C. Mansfield, C. P. Winlove, J. Moger, and S. J. Matcher, “Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy,” J. Biomed. Opt.13(4), 044020 (2008). [CrossRef] [PubMed]
  14. F. Légaré, C. P. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J.93(4), 1312–1320 (2007). [CrossRef] [PubMed]
  15. A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J.87(4), 2778–2786 (2004). [CrossRef] [PubMed]
  16. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003). [CrossRef] [PubMed]
  17. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A.99(17), 11014–11019 (2002). [CrossRef] [PubMed]
  18. R. Rout, S. McDonnell, R. Benson, N. A. Athanasou, A. Carr, H. Doll, H. S. Gill, D. W. Murray, P. A. Hulley, and A. J. Price, “The histological features of anteromedial gonarthrosis--the comparison of two grading systems in a human phenotype of osteoarthritis,” Knee18(3), 172–176 (2011). [CrossRef] [PubMed]
  19. S. Armstrong, R. Read, and P. Ghosh, “The effects of intraarticular hyaluronan on cartilage and subchondral bone changes in an ovine model of early osteoarthritis,” J. Rheumatol.21(4), 680–688 (1994). [PubMed]
  20. D. Sandkuijl, A. E. Tuer, D. Tokarz, J. E. Sipe, and V. Barzda, “Numerical second- and third-harmonic generation microscopy,” J. Opt. Soc. Am. B30(2), 382–395 (2013). [CrossRef]
  21. P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, “Quantitative second-harmonic generation microscopy in collagen,” Appl. Opt.42(25), 5209–5219 (2003). [CrossRef] [PubMed]
  22. C. Harnagea, M. Vallières, C. P. Pfeffer, D. Wu, B. R. Olsen, A. Pignolet, F. Légaré, and A. Gruverman, “Two-dimensional nanoscale structural and functional imaging in individual collagen type I fibrils,” Biophys. J.98(12), 3070–3077 (2010). [CrossRef] [PubMed]
  23. D. A. D. Parry and A. S. Craig, “Quantitative electron microscope observations of the collagen fibrils in rat-tail tendon,” Biopolymers16(5), 1015–1031 (1977). [CrossRef] [PubMed]
  24. M. Rivard, M. Laliberté, A. Bertrand-Grenier, C. Harnagea, C. P. Pfeffer, M. Vallières, Y. St-Pierre, A. Pignolet, M. A. El Khakani, and F. Légaré, “The structural origin of second harmonic generation in fascia,” Biomed. Opt. Express2(1), 26–36 (2011). [CrossRef] [PubMed]
  25. L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am.14(1), 91–104 (1997). [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  27. A. Benninghoff, “Form und bau der gelenknorpel in ihren bezeihungen zur funktion,” Z. Mikrosk. Anat. Forsch.2(5), 783–862 (1925). [CrossRef]
  28. W. S. Hwang, B. Li, L. H. Jin, K. Ngo, N. S. Schachar, and G. N. F. Hughes, “Collagen fibril structure of normal, aging, and osteoarthritic cartilage,” J. Pathol.167(4), 425–433 (1992). [CrossRef] [PubMed]
  29. N. D. Broom, M.-H. Chen, and A. Hardy, “A degeneration-based hypothesis for interpreting fibrillar changes in the osteoarthritic cartilage matrix,” J. Anat.199(6), 683–698 (2001). [CrossRef] [PubMed]
  30. J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun.196(1-6), 325–330 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited