OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 1 — Jan. 1, 2014
  • pp: 275–286

In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor

Songlin Yu, Dachao Li, Hao Chong, Changyue Sun, Haixia Yu, and Kexin Xu  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 1, pp. 275-286 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1387 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Because mid-infrared (mid-IR) spectroscopy is not a promising method to noninvasively measure glucose in vivo, a method for minimally invasive high-precision glucose determination in vivo by mid-IR laser spectroscopy combined with a tunable laser source and small fiber-optic attenuated total reflection (ATR) sensor is introduced. The potential of this method was evaluated in vitro. This research presents a mid-infrared tunable laser with a broad emission spectrum band of 9.19 to 9.77 μm (1024~1088 cm−1) and proposes a method to control and stabilize the laser emission wavelength and power. Moreover, several fiber-optic ATR sensors were fabricated and investigated to determine glucose in combination with the tunable laser source, and the effective sensing optical length of these sensors was determined for the first time. In addition, the sensitivity of this system was four times that of a Fourier transform infrared (FT-IR) spectrometer. The noise-equivalent concentration (NEC) of this laser measurement system was as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. Furthermore, a partial least-squares regression and Clarke error grid were used to quantify the predictability and evaluate the prediction accuracy of glucose concentration in the range of 5 to 500 mg/dL (physiologically relevant range: 30~400 mg/dL). The experimental results were clinically acceptable. The high sensitivity, tunable laser source, low NEC and small fiber-optic ATR sensor demonstrate an encouraging step in the work towards precisely monitoring glucose levels in vivo.

© 2013 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Noninvasive Optical Diagnostics

Original Manuscript: October 21, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: December 7, 2013
Published: December 17, 2013

Songlin Yu, Dachao Li, Hao Chong, Changyue Sun, Haixia Yu, and Kexin Xu, "In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor," Biomed. Opt. Express 5, 275-286 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem.45(9), 1651–1658 (1999). [PubMed]
  2. W. Zhang, R. Liu, W. Zhang, H. Jia, and K. Xu, “Discussion on the validity of NIR spectral data in non-invasive blood glucose sensing,” Biomed. Opt. Express4(6), 789–802 (2013). [CrossRef] [PubMed]
  3. T. Jax, T. Heise, L. Nosek, J. Gable, G. Lim, and C. Calentine, “Automated near-Continuous glucose monitoring measured in plasma using mid-infrared spectroscopy,” J. Diabetes Sci. Tech.5(2), 345–352 (2011). [PubMed]
  4. P. Roychoudhury, L. M. Harvey, and B. McNeil, “At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy,” Anal. Chim. Acta561(1-2), 218–224 (2006). [CrossRef]
  5. E. Diessel, P. Kamphaus, K. Grothe, R. Kurte, U. Damm, and H. M. Heise, “Nanoliter serum sample analysis by mid-infrared spectroscopy for minimally invasive blood-glucose monitoring,” Appl. Spectrosc.59(4), 442–451 (2005). [CrossRef] [PubMed]
  6. C. Charlton, “Quantum cascade lasers for Mid-Infrared chemical sensing”, P45–P47, (2005).
  7. A. P. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Biomed. Opt. Express4(4), 520–530 (2013). [CrossRef] [PubMed]
  8. “American National Standard for Safe Use of Lasers,” ANSI Standard Z136.1–2007 (R2007).
  9. G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt.3(3), 267–280 (1998). [CrossRef] [PubMed]
  10. P. Garidel, “Mid-FTIR-Microspectroscopy of stratum corneum single cells and stratum corneum tissue,” Phys. Chem. Chem. Phys.4(22), 5671–5677 (2002). [CrossRef]
  11. X. Guo, A. Mandelis, and B. Zinman, “Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry,” Biomed. Opt. Express3(11), 3012–3021 (2012). [CrossRef] [PubMed]
  12. J. Kottmann, U. Grob, J. M. Rey, and M. W. Sigrist, “Mid-infrared fiber-coupled photoacoustic sensor for biomedical applications,” Sensors (Basel)13(1), 535–549 (2013). [CrossRef] [PubMed]
  13. M. Brandstetter and B. Lendl, “Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids,” Sens. Actuators B Chem.170, 189–195 (2012). [CrossRef]
  14. M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B110(2), 233–239 (2013). [CrossRef]
  15. A. Lambrecht, T. Beyer, K. Hebestreit, R. Mischler, and W. Petrich, “Continuous Glucose Monitoring by Means of Fiber-Based, Mid-Infrared Laser Spectroscopy,” Appl. Spectrosc.60(7), 729–736 (2006). [CrossRef] [PubMed]
  16. S. Liakat, K. A. Bors, T. Y. Huang, A. P. Michel, E. Zanghi, and C. F. Gmachl, “In vitro measurements of physiological glucose concentrations in biological fluids using mid-infrared light,” Biomed. Opt. Express4(7), 1083–1090 (2013). [CrossRef] [PubMed]
  17. E. Cengiz and E. W. V. Tamborlane, “A tale of two compartments: interstitial versus blood glucose monitoring,” Diabetes Technol. Ther.11(S1), S11–S16 (2009).
  18. W. B. Martin, S. Mirov, and R. Venugopalan, “Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum,” Appl. Spectrosc.59(7), 881–884 (2005). [CrossRef] [PubMed]
  19. H. M. Heise, R. Marbach, Th. Koschinsky, and F. A. Gries, “Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis,” Appl. Spectrosc.48(1), 85–95 (1994). [CrossRef]
  20. R. Vonach, J. Buschmann, R. Falkowski, R. Schindler, B. Lendl, and R. Kellner, “Application of mid-infrared transmission spectrometry to the direct determination of glucose in whole blood,” Appl. Spectrosc.52(6), 820–822 (1998). [CrossRef]
  21. Membrane filtration products, INC., http://www.membrane-mfpi.com/home/tech-notes .
  22. U. Damm, V. R. Kondepati, and H. M. Heise, “Continuous reagent-free bed-side monitoring of glucose in biofluids using infrared spectrometry and micro-dialysis,” Vib. Spectrosc.43(1), 184–192 (2007). [CrossRef]
  23. H. M. Heise, G. Voigt, P. Lampen, L. Küpper, S. Rudloff, and G. Werner, “Multivariate calibration for the determination of analytes in urine using mid-infrared attenuated total reflection spectroscopy,” Appl. Spectrosc.55(4), 434–443 (2001). [CrossRef]
  24. M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, “Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to noninvasive glucose measurement,” Spectrochim. Acta [A]85(1), 61–65 (2012). [CrossRef]
  25. C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011). [CrossRef] [PubMed]
  26. S. Haidar, K. Miyamoto, and H. Ito, “Generation of tunable mid-IR (5.5-9.3 ) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun.241(1-3), 173–178 (2004). [CrossRef]
  27. E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett.26(18), 1430–1432 (2001). [CrossRef] [PubMed]
  28. S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun.171(1-3), 171–176 (1999). [CrossRef]
  29. H. Hazama, H. Kutsumi, and K. Awazu, “Mid-Infrared pulsed Laser lithotripsy with a tunable laser using difference-frequency generation,” Opt. Photon. J.3(044A), 8–13 (2013). [CrossRef]
  30. M. Tacke, “Lead-salt lasers,” Philos. Trans. Roy. Soc. London. Ser. A.359(1780), 547–566 (2001). [CrossRef]
  31. A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B67(3), 317–330 (1998). [CrossRef]
  32. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 −11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009). [CrossRef]
  33. M. Meinke, G. Müller, H. Albrecht, C. Antoniou, H. Richter, and J. Lademann, “Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements,” J. Biomed. Opt.13(1), 014021 (2008). [CrossRef] [PubMed]
  34. Y. Gotshal, I. Adam, and A. Katzir, “Glucose measurements in solutions using fiber optic evanescent wave spectroscopy and tunable CO2 laser,” Proc. SPIE3262, 192–196 (1998). [CrossRef]
  35. Y. Ma and D. Liang, “Tunable and frequency-stabilized CO2 waveguide laser,” Opt. Eng.41(12), 3319–3323 (2002). [CrossRef]
  36. S. L. Yu, D. C. Li, H. Zhong, C. Y. Sun, and K. X. Xu, “[Application of Mid-infrared wavelength tunable laser in glucose determination],” Spectros. Spect. Anal.33(4), 972–976 (2013). [PubMed]
  37. Yu S, Li D, Chong H, Sun C, and Xu K, “Tunable mid-infrared laser spectroscopy based on fiber-optic sensor for glucose measurement,” Proc. SPIE 8591, 85910K1–6 (2013).
  38. S. Glaus and G. Calzaferri, “The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study,” Photochem. Photobiol. Sci.2(4), 398–401 (2003). [CrossRef]
  39. V. Artjushenko, P. Baskov, G. Kuzmicheva, M. Musina, V. Sakharov, and T. Sakharova, “Structure and properties of AgCl1-x Brx (x=0.5-0.8) optical fibers,” Inorg. Mater.41(2), 178–181 (2005). [CrossRef]
  40. Y. Raichlin, L. Fel, and A. Katzir, “Evanescent-wave infrared spectroscopy with flattened fibers as sensing elements,” Opt. Lett.28(23), 2297–2299 (2003). [CrossRef] [PubMed]
  41. A. Grazia, M. Riccardo, and F. L. Ciaccheri, “Evanescent Wave Absorption Spectroscopy by Means of Bi-tapered Multimode Optical Fibers,” Appl. Spectrosc.52(4), 546–551 (1998). [CrossRef]
  42. Y. Raichlin and A. Katzir, “Fiber-Optic Evanescent Wave Spectroscopy in the Middle Infrared,” Appl. Spectrosc.62(2), 55–72 (2008). [CrossRef] [PubMed]
  43. S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron.31(8), 625–636 (1999). [CrossRef]
  44. W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987). [CrossRef] [PubMed]
  45. T. Bailey, H. Zisser, and A. Chang, “New features and performance of a next-generation SEVEN-day continuous glucose monitoring system with short lag time,” Diabetes Technol. Ther.11(12), 749–755 (2009). [CrossRef] [PubMed]
  46. H. Endo, Y. Yonemori, K. Hibi, H. Ren, T. Hayashi, W. Tsugawa, and K. Sode, “Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish,” Biosens. Bioelectron.24(5), 1417–1423 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited