OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 1 — Jan. 1, 2014
  • pp: 287–292

Polarimetric study of birefringent turbid media with three-dimensional optic axis orientation

Noé Ortega-Quijano, Félix Fanjul-Vélez, and José Luis Arce-Diego  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 1, pp. 287-292 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1068 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent approaches to the analysis of biological samples with three-dimensional linear birefringence orientation require numerical methods to estimate the best fit parameters from experimental measures. We present a novel analytical method for characterizing the intrinsic retardance and the three-dimensional optic axis orientation of uniform and uniaxial turbid media. It is based on a model that exploits the recently proposed differential generalized Jones calculus, remarkably suppressing the need for numerical procedures. The method is applied to the analysis of samples modeled with polarized sensitive Monte Carlo. The results corroborate its capacity to successfully characterize 3D linear birefringence in a straightforward way.

© 2013 Optical Society of America

OCIS Codes
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Optics of Tissue and Turbid Media

Original Manuscript: September 5, 2013
Revised Manuscript: November 5, 2013
Manuscript Accepted: November 25, 2013
Published: December 19, 2013

Noé Ortega-Quijano, Félix Fanjul-Vélez, and José Luis Arce-Diego, "Polarimetric study of birefringent turbid media with three-dimensional optic axis orientation," Biomed. Opt. Express 5, 287-292 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt.16(11), 110801 (2011). [CrossRef] [PubMed]
  2. F. Fanjul-Vélez and J. L. Arce-Diego, “Polarimetry of birefringent biological tissues with arbitrary fibril orientation and variable incidence angle,” Opt. Lett.35(8), 1163–1165 (2010). [CrossRef] [PubMed]
  3. N. Ugryumova, S. V. Gangnus, and S. J. Matcher, “Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography,” Opt. Lett.31(15), 2305–2307 (2006). [CrossRef] [PubMed]
  4. M. A. Wallenburg, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Polarimetry-based method to extract geometry-independent metrics of tissue anisotropy,” Opt. Lett.35(15), 2570–2572 (2010). [CrossRef] [PubMed]
  5. N. Ortega-Quijano and J. L. Arce-Diego, “Generalized Jones matrices for anisotropic media,” Opt. Express21(6), 6895–6900 (2013). [CrossRef] [PubMed]
  6. N. Ortega-Quijano and J. L. Arce-Diego, “Mueller matrix differential decomposition,” Opt. Lett.36(10), 1942–1944 (2011). [CrossRef] [PubMed]
  7. R. M. A. Azzam, “Three-dimensional polarization states of monochromatic light fields,” J. Opt. Soc. Am. A28(11), 2279–2283 (2011). [CrossRef] [PubMed]
  8. C. R. Jones, “A new calculus for the treatment of optical systems. VII. Properties of the N-matrices,” J. Opt. Soc. Am.38(8), 671–685 (1948). [CrossRef]
  9. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt.7(3), 350–358 (2002). [CrossRef] [PubMed]
  10. S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett.27(2), 101–103 (2002). [CrossRef] [PubMed]
  11. D. Lara and C. Dainty, “Axially resolved complete Mueller matrix confocal microscopy,” Appl. Opt.45(9), 1917–1930 (2006). [CrossRef] [PubMed]
  12. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett.24(8), 537–539 (1999). [CrossRef] [PubMed]
  13. R. Barakat, “Exponential versions of the Jones and Mueller-Jones polarization matrices,” J. Opt. Soc. Am. A13(1), 158–163 (1996). [CrossRef]
  14. N. Ortega-Quijano, B. Haj-Ibrahim, E. García-Caurel, J. L. Arce-Diego, and R. Ossikovski, “Experimental validation of Mueller matrix differential decomposition,” Opt. Express20(2), 1151–1163 (2012). [CrossRef] [PubMed]
  15. N. Ortega-Quijano and J. L. Arce-Diego, “Depolarizing differential Mueller matrices,” Opt. Lett.36(13), 2429–2431 (2011). [CrossRef] [PubMed]
  16. R. Ossikovski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett.36(12), 2330–2332 (2011). [CrossRef] [PubMed]
  17. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express13(12), 4420–4438 (2005). [CrossRef] [PubMed]
  18. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited