OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 1 — Jan. 1, 2014
  • pp: 322–337

Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 1, pp. 322-337 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method, based on a single scattering model, to calculate the attenuation coefficient of each pixel in optical coherence tomography (OCT) depth profiles. Numerical simulations were used to determine the model’s response to different depths and attenuation coefficients. Experiments were performed on uniform and layered phantoms with varying attenuation coefficients. They were measured by a 1300 nm OCT system and their attenuation coefficients were evaluated by our proposed method and by fitting the OCT slope as the gold standard. Both methods showed largely consistent results for the uniform phantoms. On the layered phantom, only our proposed method accurately estimated the attenuation coefficients. For all phantoms, the proposed method largely reduced the variability of the estimated attenuation coefficients. The method was illustrated on an in-vivo retinal OCT scan, effectively removing common imaging artifacts such as shadowing. By providing localized, per-pixel attenuation coefficients, this method enables tissue characterization based on attenuation coefficient estimates from OCT data.

© 2013 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6935) Medical optics and biotechnology : Tissue characterization
(110.3010) Imaging systems : Image reconstruction techniques
(110.3200) Imaging systems : Inverse scattering

ToC Category:
Optical Coherence Tomography

Original Manuscript: October 18, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: December 12, 2013
Published: December 23, 2013

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, "Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography," Biomed. Opt. Express 5, 322-337 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kuc, “Clinical application of an ultrasound attenuation coefficient estimation technique for liver pathology characterization,” IEEE Trans. Biomed. Eng.27, 312–319 (1980). [CrossRef] [PubMed]
  2. G. Berger, P. Laugier, J. C. Thalabard, and J. Perrin, “Global breast attenuation: Control group and benign breast diseases,” Ultrasonic Imaging12, 47–57 (1990).
  3. K. B. Sagar, D. H. Agemura, W. D. O’Brien, L. R. Pelc, T. L. Rhyne, L. S. Wann, R. A. Komorowski, and D. C. Warltier, “Quantitative ultrasonic assessment of normal and ischaemic myocardium with an acoustic microscope: relationship to integrated backscatter,” Cardiovasc. Res.24, 447–455 (1990). [CrossRef] [PubMed]
  4. Y. Sugata, K. Murakami, M. Ito, T. Shiina, and Y. Yamamoto, “An application of ultrasonic tissue characterization to the diagnosis of cataract,” Acta Ophthalmologica70, 35–39 (1992). [CrossRef]
  5. F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging24, 1369–1376 (2005). [CrossRef] [PubMed]
  6. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13, 034003 (2008). [CrossRef] [PubMed]
  7. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010). [CrossRef] [PubMed]
  8. R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15, 046029 (2010). [CrossRef] [PubMed]
  9. K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol.25, 311–3115 (2011). [CrossRef] [PubMed]
  10. K. Barwari, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, J. J. de la Rosette, and M. P. Laguna, “Differentiation between normal renal tissue and renal tumours using functional optical coherence tomography: a phase I in vivo human study,” BJU International110, E415–E420 (2012). [CrossRef] [PubMed]
  11. P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15, 066003 (2010). [CrossRef]
  12. Q. Q. Zhang, X. J. Wu, T. Tang, S. W. Zhu, Q. Yao, B. Z. Gao, and X. C. Yuan, “Quantitative analysis of rectal cancer by spectral domain optical coherence tomography,” Phys. Med. Biol.57, 10 (2012).
  13. J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest Ophthalmol Vis Sci53, 2424–2430 (2012). [CrossRef] [PubMed]
  14. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest Ophthalmol Vis Sci53, 6102–6108 (2012). [CrossRef] [PubMed]
  15. F. J. van der Meer, D. J. Faber, M. C. Aalders, J. Perree, and T. G. J. M. van Leeuwen, “Detection of apoptosis by optical coherence tomography (OCT),” Proc. SPIE4251, 165–169 (2001). [CrossRef]
  16. F. van der Meer, D. Faber, M. Aalders, A. Poot, I. Vermes, and T. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25, 259–267 (2010). [CrossRef]
  17. J. Li, C. Chen, B. Chen, Z. Shen, Y. He, Y. Xia, and S. Liu, “Quantitative discrimination of NPC cell lines using optical coherence tomography,” J. Biophoton.5, 544–549 (2012). [CrossRef]
  18. J. Li, Z. Tu, Z. Shen, Y. Xia, Y. He, S. Liu, and C. Chen, “Quantitative measurement of optical attenuation coefficients of cell lines CNE1, CNE2, and NP69 using optical coherence tomography,” Lasers Med. Sci.28, 621–625 (2013). [CrossRef]
  19. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” Proc. SPIE8209, 8209U (2012).
  20. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express2, 1743–1756 (2011). [CrossRef] [PubMed]
  21. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue - statistics of attenuation and backscattering,” Phys. Med. Biol.39, 1705–1720 (1994). [CrossRef] [PubMed]
  22. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express12, 4353–4365 (2004). [CrossRef] [PubMed]
  23. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9, 227–233 (2003). [CrossRef]
  24. D. I. Hughes and F. A. Duck, “Automatic attenuation compensation for ultrasonic imaging,” Ultrasound Med. Biol.23, 651–664 (1997). [CrossRef] [PubMed]
  25. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15, 025001 (2010). [CrossRef] [PubMed]
  26. J. A. Li, M. de Groot, F. Helderman, J. H. Mo, J. M. A. Daniels, K. Grunberg, T. G. Sutedja, and J. F. de Boer, “High speed miniature motorized endoscopic probe for optical frequency domain imaging,” Opt. Express20, 24132–24138 (2012). [CrossRef] [PubMed]
  27. M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci52, 7738–7748 (2011). [CrossRef] [PubMed]
  28. P. Lee, W. Gao, and X. Zhang, “Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography,” Appl. Opt.49, 3538–3544 (2010). [CrossRef] [PubMed]
  29. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A17, 484–490 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited