OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 1 — Jan. 1, 2014
  • pp: 40–53

Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy

Manu Sharma, Ricky Hennessy, Mia K. Markey, and James W. Tunnell  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 1, pp. 40-53 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (986 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A two-layer Monte Carlo lookup table-based inverse model is validated with two-layered phantoms across physiologically relevant optical property ranges. Reflectance data for source-detector separations of 370 μm and 740 μm were collected from these two-layered phantoms and top layer thickness, reduced scattering coefficient and the top and bottom layer absorption coefficients were extracted using the inverse model and compared to the known values. The results of the phantom verification show that this method is able to accurately extract top layer thickness and scattering when the top layer thickness ranges from 0 to 550 μm. In this range, top layer thicknesses were measured with an average error of 10% and the reduced scattering coefficient was measured with an average error of 15%. The accuracy of top and bottom layer absorption coefficient measurements was found to be highly dependent on top layer thickness, which agrees with physical expectation; however, within appropriate thickness ranges, the error for absorption properties varies from 12–25%.

© 2013 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Optics of Tissue and Turbid Media

Original Manuscript: September 30, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: November 21, 2013
Published: December 2, 2013

Manu Sharma, Ricky Hennessy, Mia K. Markey, and James W. Tunnell, "Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy," Biomed. Opt. Express 5, 40-53 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J. Biomed. Opt.10(6), 064020 (2005). [CrossRef]
  2. M. C. Skala, G. M. Palmer, K. M. Vrotsos, A. Gendron-Fitzpatrick, and N. Ramanujam, “Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy,” Opt. Express15(12), 7863–7875 (2007). [CrossRef] [PubMed]
  3. G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol.117(6), 1452–1457 (2001). [CrossRef]
  4. S. Wan, R. R. Anderson, and J. A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol.34(4), 493–499 (1981). [PubMed]
  5. N. Rajaram, J. S. Reichenberg, M. R. Migden, T. H. Nguyen, and J. W. Tunnell, “Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer,” Laser Surg. Med.42(10), 716–727 (2010). [CrossRef]
  6. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt.38(31), 6628–6637 (1999). [CrossRef]
  7. T. Farrell, M. Patterson, and B. Wilson, “A diffusion-theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992). [CrossRef] [PubMed]
  8. G. Zonios, I. Bassukas, and A. Dimou, “Comparative evaluation of two simple diffuse reflectance models for biological tissue applications,” Appl. Opt.47(27), 4965–4973 (2008). [CrossRef] [PubMed]
  9. Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt.7(4), 587–594 (2002). [CrossRef] [PubMed]
  10. T. Papaioannou, N. W. Preyer, F. Qiyin, A. Brightwell, M. Carnohan, G. Cottone, R. Ross, L. R. Jones, and L. Marcu, “Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm,” Appl. Opt.43(14), 2846–2860 (2004). [CrossRef] [PubMed]
  11. T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol.37(12), 2281–2286, (1992). [CrossRef] [PubMed]
  12. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt.35(13), 2304–2314 (1996). [CrossRef] [PubMed]
  13. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008). [CrossRef] [PubMed]
  14. B. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt.17(5), 057001 (2012). [CrossRef] [PubMed]
  15. L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio.47(2), 131–146 (1995). [CrossRef]
  16. R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt.18(3), 37003 (2013). [CrossRef]
  17. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  18. T. J. Farrell, M. S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectance reflectometry,” Appl. Opt.37(10), 1958–1972 (1998). [CrossRef]
  19. I. S. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model,” J. Biomed. Opt.12(1), 014030 (2007). [CrossRef] [PubMed]
  20. G. Mantis and G. Zonios, “Simple two-layer reflectance model for biological tissue applications,” Appl. Opt.48(18), 3490–3496 (2009). [CrossRef] [PubMed]
  21. G. Zonios and A. Dimou, “Simple two-layer reflectance model for biological tissue applications: lower absorbing layer,” Appl. Opt.49(27), 5026–5031 (2010). [CrossRef] [PubMed]
  22. Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,” J. Opt. Soc. Am. A24(4), 1011–1125 (2007). [CrossRef]
  23. T. Y. Tseng, C. Y. Chen, Y. S. Li, and K. B. Sung, “Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy,” Biomed. Opt. Express2(4), 901–914 (2011). [CrossRef] [PubMed]
  24. Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt.45(19), 4476–4490 (2006). [CrossRef] [PubMed]
  25. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt.37(4), 779–791 (1998). [CrossRef]
  26. D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt.49(10), 1707–1719 (2010). [CrossRef] [PubMed]
  27. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt.13(6), 060504 (2008). [CrossRef]
  28. L. Wang, S. Jacques, and L. Zheng, “CONV - convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Prog. Bio.54(3), 141–150 (1997). [CrossRef]
  29. R. Graaff, M. H. Koelink, F. F. de Mul, W. G. Zijistra, A. C. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt.32(4), 426–434 (1993). [CrossRef] [PubMed]
  30. F. Alizadeh, “Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization,” SIAM J. Optim.5(1), 13–51 (1995). [CrossRef]
  31. E. Borisova, P. Troyanova, P. Pavlova, and L. Avramov, “Diagnostics of pigmented skin tumors based on laser-induced autofluorescence and diffuse reflectance spectroscopy,” Quantum Electronics, 38(6), 597 (2008). [CrossRef]
  32. G. Zonios, A. Dimou, M. Carrara, and R. Marchesini, “In vivo optical properties of melanocytic skin lesions: common nevi, dysplastic nevi and malignant melanoma,” Photochem. Photobiol.86(1) 236–240 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited