OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 2 — Feb. 1, 2014
  • pp: 417–426

A hybrid silicon-PDMS optofluidic platform for sensing applications

Genni Testa, Gianluca Persichetti, Pasqualina M. Sarro, and Romeo Bernini  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 2, pp. 417-426 (2014)
http://dx.doi.org/10.1364/BOE.5.000417


View Full Text Article

Enhanced HTML    Acrobat PDF (1407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A hybrid silicon-poly(dimethysiloxane) (PDMS) optofluidic platform for lab-on-a-chip applications is proposed. A liquid-core waveguide with a self-aligned solid-core waveguide and a microfluidic device are integrated with a multilayer approach, resulting in a three-dimensional device assembly. The optofluidic layer was fabricated with a hybrid silicon-polymer technology, whereas the microfluidic layer was fabricated with a soft lithography technique. The combination of different materials and fabrication processes allows a modular approach, enabling both the benefits from the high optical quality achievable with silicon technology and the low cost of polymer processing. The proposed chip has been tested for fluorescence measurements on Cy5 water solutions, demonstrating the possibility to obtain a limit of detection of 2.5 nM.

© 2014 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Microfluidics

History
Original Manuscript: July 24, 2013
Revised Manuscript: September 9, 2013
Manuscript Accepted: October 9, 2013
Published: January 9, 2014

Citation
Genni Testa, Gianluca Persichetti, Pasqualina M. Sarro, and Romeo Bernini, "A hybrid silicon-PDMS optofluidic platform for sensing applications," Biomed. Opt. Express 5, 417-426 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-2-417


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Kuswandi, J. Nuriman, Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta601(2), 141–155 (2007). [CrossRef] [PubMed]
  2. K. B. Mogensen and J. P. Kutter, “Optical detection in microfluidic systems,” Electrophoresis30(S1Suppl 1), S92–S100 (2009). [CrossRef] [PubMed]
  3. F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip8(12), 2015–2031 (2008). [CrossRef] [PubMed]
  4. A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express2(3), 658–664 (2011). [CrossRef] [PubMed]
  5. L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip6(1), 115–120 (2006). [CrossRef] [PubMed]
  6. B. R. Watts, Z. Zhang, C.-Q. Xu, X. Cao, and M. Lin, “Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device,” Biomed. Opt. Express3(11), 2784–2793 (2012). [CrossRef] [PubMed]
  7. K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip7(11), 1539–1545 (2007). [CrossRef] [PubMed]
  8. Y. Zhao, K. D. Leake, P. Measor, M. H. Jenkins, J. Keeley, H. Schmidt, and A. R. Hawkins, “Optimization of interface transmission between integrated solid core and optofluidic waveguides,” IEEE Photon. Technol. Lett.24, 46–48 (2012).
  9. O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip6(8), 981–987 (2006). [CrossRef] [PubMed]
  10. M. Fleger and A. Neyer, “PDMS microfluidic chip with integrated waveguides for optical detection,” Microelectron. Eng.83(4-9), 1291–1293 (2006). [CrossRef]
  11. K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt.42(19), 4072–4079 (2003). [CrossRef] [PubMed]
  12. C. Dongre, J. van Weerd, N. Bellini, R. Osellame, G. Cerullo, R. van Weeghel, H. J. W. M. Hoekstra, and M. Pollnau, “Dual-point dual-wavelength fluorescence monitoring of DNA separation in a lab on a chip,” Biomed. Opt. Express1(2), 729–735 (2010). [CrossRef] [PubMed]
  13. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9(1), 91–96 (2009). [CrossRef] [PubMed]
  14. D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett.87(21), 211111 (2005). [CrossRef]
  15. G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide for laser-induced fluorescence spectroscopy,” Opt. Lett.37(24), 5115–5117 (2012). [CrossRef] [PubMed]
  16. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid Nanofluidics4(1-2), 3–16 (2008). [CrossRef] [PubMed]
  17. D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip7(9), 1171–1175 (2007). [CrossRef] [PubMed]
  18. P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hübner, and J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt.40(34), 6246–6251 (2001). [CrossRef] [PubMed]
  19. H. Andersson and A. van den Berg, “Microfluidic devices for cellomics: a review,” Sens. Actuators B Chem.92(3), 315–325 (2003). [CrossRef]
  20. L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip6(1), 115–120 (2006). [CrossRef] [PubMed]
  21. A. Nitkowski, A. Baeumner, and M. Lipson, “On-chip spectrophotometry for bioanalysis using microring resonators,” Biomed. Opt. Express2(2), 271–277 (2011). [CrossRef] [PubMed]
  22. K. Kalkandjiev, L. Riegger, D. Kosse, M. Welsche, L. Gutzweiler, R. Zengerle, and P. Koltay, “Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass,” J. Micromech. Microeng.21(2), 025008 (2011). [CrossRef]
  23. K. Kalkandjiev, R. Zengerle, and P. Koltay, “Hybrid fabrication of microfluidic chips based on COC, silicon and TMMF dry resist,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2010), pp. 400–403. [CrossRef]
  24. J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis23(20), 3461–3473 (2002). [CrossRef] [PubMed]
  25. G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Hybrid Silicon-PDMS optofluidic ARROW waveguide,” IEEE Photon. Technol. Lett.24(15), 1307–1309 (2012). [CrossRef]
  26. J. W. Parks, H. Cai, L. Zempoaltecatl, T. D. Yuzvinsky, K. Leake, A. R. Hawkins, and H. Schmidt, “Hybrid optofluidic integration,” Lab Chip, Advanced (2013).
  27. G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photon. Technol. Lett.22(9), 616–618 (2010). [CrossRef]
  28. G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett.97(13), 131110 (2010). [CrossRef]
  29. G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett.35(10), 1584–1586 (2010). [CrossRef] [PubMed]
  30. R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B Chem.100(1-2), 143–146 (2004). [CrossRef]
  31. T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys.77(3), 977–1026 (2005). [CrossRef]
  32. J. Wang, M. Zheng, W. Wang, and Z. Li, “Optimal protocol for moulding PDMS with a PDMS master,” Chips & Tips (Lab on a Chip), 06 Jul 2010.
  33. A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip8(5), 794–800 (2008). [CrossRef] [PubMed]
  34. F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip8(12), 2015–2031 (2008). [CrossRef] [PubMed]
  35. K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “Fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem.382(3), 810–816 (2005). [CrossRef] [PubMed]
  36. R. Irawan, C. M. Tay, S. C. Tjin, and C. Y. Fu, “Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications,” Lab Chip6(8), 1095–1098 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited