OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 2 — Feb. 1, 2014
  • pp: 439–456

Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo

Franz Felberer, Julia-Sophie Kroisamer, Bernhard Baumann, Stefan Zotter, Ursula Schmidt-Erfurth, Christoph K. Hitzenberger, and Michael Pircher  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 2, pp. 439-456 (2014)
http://dx.doi.org/10.1364/BOE.5.000439


View Full Text Article

Enhanced HTML    Acrobat PDF (5328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new instrument that is capable of imaging human photoreceptors in three dimensions. To achieve high lateral resolution, the system incorporates an adaptive optics system. The high axial resolution is achieved through the implementation of optical coherence tomography (OCT). The instrument records simultaneously both, scanning laser ophthalmoscope (SLO) and OCT en-face images, with a pixel to pixel correspondence. The information provided by the SLO is used to correct for transverse eye motion in post-processing. In order to correct for axial eye motion, the instrument is equipped with a high speed axial eye tracker. In vivo images of foveal cones as well as images recorded at an eccentricity from the fovea showing cones and rods are presented.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4470) Medical optics and biotechnology : Ophthalmology
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: October 31, 2013
Revised Manuscript: December 30, 2013
Manuscript Accepted: January 2, 2014
Published: January 10, 2014

Citation
Franz Felberer, Julia-Sophie Kroisamer, Bernhard Baumann, Stefan Zotter, Ursula Schmidt-Erfurth, Christoph K. Hitzenberger, and Michael Pircher, "Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo," Biomed. Opt. Express 5, 439-456 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-2-439


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Z. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  2. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature397(6719), 520–522 (1999). [CrossRef] [PubMed]
  3. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002). [CrossRef] [PubMed]
  4. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express14(8), 3354–3367 (2006). [CrossRef] [PubMed]
  5. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A24(5), 1313–1326 (2007). [CrossRef] [PubMed]
  6. S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-Resolution Imaging of Resolved Central Serous Chorioretinopathy Using Adaptive Optics Scanning Laser Ophthalmoscopy,” Ophthalmology117(9), 1800–1809 (2010). [CrossRef] [PubMed]
  7. R. S. Jonnal, J. Qu, K. Thorn, and D. T. Miller, “En-face coherence gating of the retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci.44, U275–U275 (2003).
  8. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(18), 2142–2144 (2004). [CrossRef] [PubMed]
  9. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005). [CrossRef] [PubMed]
  10. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive Optics Retinal Imaging: Emerging Clinical Applications,” Optom. Vis. Sci.87(12), 930–941 (2010). [CrossRef] [PubMed]
  11. A. Roorda, “Applications of Adaptive Optics Scanning Laser Ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010). [PubMed]
  12. D. T. Miller, O. P. Kocaoglu, Q. Wang, and S. Lee, “Adaptive optics and the eye (super resolution OCT),” Eye (Lond.)25(3), 321–330 (2011). [CrossRef] [PubMed]
  13. D. R. Williams, “Imaging single cells in the living retina,” Vision Res.51(13), 1379–1396 (2011). [CrossRef] [PubMed]
  14. M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive Optics Technology for High-Resolution Retinal Imaging,” Sensors (Basel)13(1), 334–366 (2013). [CrossRef] [PubMed]
  15. M. Pircher and R. Zawadzki, “Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol.2(6), 1019–1035 (2007). [CrossRef]
  16. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(6), 1757–1768 (2011). [CrossRef] [PubMed]
  17. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011). [CrossRef] [PubMed]
  18. F. Felberer, J. S. Kroisamer, C. K. Hitzenberger, and M. Pircher, “Lens based adaptive optics scanning laser ophthalmoscope,” Opt. Express20(16), 17297–17310 (2012). [CrossRef] [PubMed]
  19. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008). [CrossRef] [PubMed]
  20. M. E. J. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, “Recent developments in optical coherence tomography for imaging the retina,” Prog. Retin. Eye Res.26(1), 57–77 (2007). [CrossRef] [PubMed]
  21. A. G. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res.27(4), 464–499 (2008). [CrossRef] [PubMed]
  22. W. Geitzenauer, C. K. Hitzenberger, and U. M. Schmidt-Erfurth, “Retinal optical coherence tomography: past, present and future perspectives,” Br. J. Ophthalmol.95(2), 171–177 (2011). [CrossRef] [PubMed]
  23. Y. Zhang, J. T. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express13(12), 4792–4811 (2005). [CrossRef] [PubMed]
  24. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express14(8), 3345–3353 (2006). [CrossRef] [PubMed]
  25. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” J. Opt. Soc. Am. A24(5), 1327–1336 (2007). [CrossRef] [PubMed]
  26. G. H. Shi, Y. Dai, L. Wang, Z. H. Ding, X. J. Rao, and Y. D. Zhang, “Adaptive optics optical coherence tomography for retina imaging,” Chin. Opt. Lett.6, 424–425 (2008). [CrossRef]
  27. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express18(8), 8515–8527 (2010). [CrossRef] [PubMed]
  28. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  29. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  30. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31(16), 2450–2452 (2006). [CrossRef] [PubMed]
  31. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE5688, 145–151 (2005).
  32. R. S. Jonnal, O. P. Kocaoglu, Q. Wang, S. Lee, and D. T. Miller, “Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics,” Biomed. Opt. Express3(1), 104–124 (2012). [CrossRef] [PubMed]
  33. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. H. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express2(4), 748–763 (2011). [CrossRef] [PubMed]
  34. A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Coherence imaging by use of a Newton rings sampling function,” Opt. Lett.21(21), 1789–1791 (1996). [CrossRef] [PubMed]
  35. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett.33(1), 22–24 (2008). [CrossRef] [PubMed]
  36. M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt.11(5), 054013 (2006). [CrossRef] [PubMed]
  37. M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express18(13), 13935–13944 (2010). [CrossRef] [PubMed]
  38. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express15(25), 16922–16932 (2007). [CrossRef] [PubMed]
  39. R. G. Cucu, M. W. Hathaway, A. G. Podoleanu, and R. B. Rosen, “Variable lateral size imaging of the human retina in vivo by combined confocal/en face optical coherence tomography with closed loop OPD-locked low coherence interferometry based active axial eye motion,” Proc. SPIE7554, 75540J (2010). [CrossRef]
  40. C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express11(21), 2753–2761 (2003). [CrossRef] [PubMed]
  41. K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. K. Hitzenberger, and D. Stifter, “En-face scanning optical coherence tomography with ultra-high resolution for material investigation,” Opt. Express13(3), 1015–1024 (2005). [CrossRef] [PubMed]
  42. M. Pircher, E. Goetzinger, R. A. Leitgeb, H. Sattmann, and C. K. Hitzenberger, “Ultrahigh resolution polarization sensitive optical coherence tomography,” Proc. SPIE5690, 257–262 (2005). [CrossRef]
  43. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett.22(23), 1811–1813 (1997). [CrossRef] [PubMed]
  44. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol.49(7), 1257–1263 (2004). [CrossRef] [PubMed]
  45. C. K. Hitzenberger, “Measurement of Corneal Thickness by Low-Coherence Interferometry,” Appl. Opt.31(31), 6637–6642 (1992). [CrossRef] [PubMed]
  46. C. K. Hitzenberger, “Optical Measurement of the Axial Eye Length by Laser Doppler Interferometry,” Invest. Ophthalmol. Vis. Sci.32(3), 616–624 (1991). [PubMed]
  47. J. I. Yellott., “Spectral Analysis of Spatial Sampling by Photoreceptors: Topological Disorder Prevents Aliasing,” Vision Res.22(9), 1205–1210 (1982). [CrossRef] [PubMed]
  48. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol.292(4), 497–523 (1990). [CrossRef] [PubMed]
  49. K. Wiesauer, M. Pircher, E. Goetzinger, C. K. Hitzenberger, R. Engelke, G. Ahrens, G. Gruetzner, and D. Stifter, “Transversal ultrahigh-resolution polarization-sensitive optical coherence tomography for strain mapping in materials,” Opt. Express14(13), 5945–5953 (2006). [CrossRef] [PubMed]
  50. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008). [CrossRef] [PubMed]
  51. E. J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express14(13), 6213–6225 (2006). [CrossRef] [PubMed]
  52. R. F. Spaide and C. A. Curcio, “Anatomical Correlates to the Bands Seen in the Outer Retina by Optical Coherence Tomography: Literature Review and Model,” Retina31(8), 1609–1619 (2011). [CrossRef] [PubMed]
  53. M. Pircher, J. S. Kroisamer, F. Felberer, H. Sattmann, E. Götzinger, and C. K. Hitzenberger, “Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT,” Biomed. Opt. Express2(1), 100–112 (2011). [CrossRef] [PubMed]
  54. J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In Vivo Autofluorescence Imaging of the Human and Macaque Retinal Pigment Epithelial Cell Mosaic,” Invest. Ophthalmol. Vis. Sci.50(3), 1350–1359 (2008). [CrossRef] [PubMed]
  55. D. Scoles, Y. N. Sulai, and A. Dubra, “In vivo dark-field imaging of the retinal pigment epithelium cell mosaic,” Biomed. Opt. Express4(9), 1710–1723 (2013). [CrossRef] [PubMed]
  56. C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express17(22), 19382–19400 (2009). [CrossRef] [PubMed]
  57. J. M. Enoch, “Wave-Guide Modes in Retinal Receptors,” Science133, 1353–1354 (1961).
  58. X. Zhu, A. Schülzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express18(7), 7506–7520 (2010). [CrossRef] [PubMed]
  59. F. Felberer, G. Aschinger, J.-S. Kroisamer, C. K. Hitzenberger, and M. Pircher, “En-face adaptive optics optical coherence tomography with 3D-motion correction,” SPIE Photonics West, San Francisco, CA (2013).
  60. S. H. Lee, J. S. Werner, and R. J. Zawadzki, “Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics - optical coherence tomography,” Biomed. Opt. Express4(11), 2508–2517 (2013). [CrossRef] [PubMed]
  61. V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.49(4), 1571–1579 (2008). [CrossRef] [PubMed]
  62. N. M. Putnam, D. X. Hammer, Y. H. Zhang, D. Merino, and A. Roorda, “Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy,” Opt. Express18(24), 24902–24916 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1546 KB)     
» Media 2: MOV (4034 KB)     
» Media 3: MOV (1314 KB)     
» Media 4: MOV (3782 KB)     
» Media 5: MOV (699 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited