OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 2 — Feb. 1, 2014
  • pp: 474–484

Thermoelastic displacement measured by DP-OCT for detecting vulnerable plaques

Jihoon Kim, Hyun Wook Kang, Junghwan Oh, and Thomas E. Milner  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 2, pp. 474-484 (2014)
http://dx.doi.org/10.1364/BOE.5.000474


View Full Text Article

Enhanced HTML    Acrobat PDF (1136 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The detection of thermoelastic displacement by differential phase optical coherence tomography (DP-OCT) was analytically evaluated for identifying atherosclerotic plaques. Analytical solutions were developed to understand the dynamics of physical distribution of point hear sources during/after laser irradiation on thermoelastic responses of MION-injected tissue. Both analytical and experimental results demonstrated a delayed peak displacement along with slow decay after laser pulse due to heterogeneous distribution of the point heat sources. Detailed description of the heat sources in tissue as well as integration of a scanning mirror can improve computational accuracy as well as clinical applicability of DP-OCT for diagnosing vulnerable plaque.

© 2014 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: July 30, 2013
Revised Manuscript: October 1, 2013
Manuscript Accepted: January 8, 2014
Published: January 14, 2014

Virtual Issues
Advances in Optics for Biotechnology, Medicine and Surgery (2013) Biomedical Optics Express

Citation
Jihoon Kim, Hyun Wook Kang, Junghwan Oh, and Thomas E. Milner, "Thermoelastic displacement measured by DP-OCT for detecting vulnerable plaques," Biomed. Opt. Express 5, 474-484 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-2-474


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. C. Tyagi, “Homocysteine redox receptor and regulation of extracellular matrix components in vascular cells,” Am. J. Physiol.274(2 Pt 1), C396–C405 (1998). [PubMed]
  2. S. Verheye, G. R. De Meyer, G. Van Langenhove, M. W. Knaapen, and M. M. Kockx, “In vivo temperature heterogeneity of atherosclerotic plaques is determined by plaque composition,” Circulation105(13), 1596–1601 (2002). [CrossRef] [PubMed]
  3. W. J. Rogers and P. Basu, “Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging,” Atherosclerosis178(1), 67–73 (2005). [CrossRef] [PubMed]
  4. S. Litovsky, M. Madjid, A. Zarrabi, S. W. Casscells, J. T. Willerson, and M. Naghavi, “Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma,” Circulation107(11), 1545–1549 (2003). [CrossRef] [PubMed]
  5. M. A. Pulido, D. J. Angiolillo, and M. A. Costa, “Imaging of atherosclerotic plaque,” Int. J. Cardiovasc. Imaging20(6), 553–559 (2004). [CrossRef] [PubMed]
  6. F. H. Epstein and R. Ross, “Atherosclerosis--an inflammatory disease,” N. Engl. J. Med.340(2), 115–126 (1999). [CrossRef] [PubMed]
  7. P. Libby, “Inflammation in atherosclerosis,” Arterioscler. Thromb. Vasc. Biol.32(9), 2045–2051 (2012). [CrossRef] [PubMed]
  8. P. Libby, “Vascular biology of atherosclerosis: overview and state of the art,” Am. J. Cardiol.91(3), 3–6 (2003). [CrossRef] [PubMed]
  9. S. A. Schmitz, S. Winterhalter, S. Schiffler, R. Gust, S. Wagner, M. Kresse, S. E. Coupland, W. Semmler, and K. J. Wolf, “USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits,” Radiology221(1), 237–243 (2001). [CrossRef] [PubMed]
  10. J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology17(16), 4183–4190 (2006). [CrossRef] [PubMed]
  11. J. Kim, J. Oh, T. E. Milner, and J. S. Nelson, “Imaging nanoparticle flow using magneto-motive optical Doppler tomography,” Nanotechnology18(3), 035504 (2007). [CrossRef] [PubMed]
  12. S. G. Ruehm, C. Corot, P. Vogt, S. Kolb, and J. F. Debatin, “Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits,” Circulation103(3), 415–422 (2001). [CrossRef] [PubMed]
  13. S. A. Schmitz, S. E. Coupland, R. Gust, S. Winterhalter, S. Wagner, M. Kresse, W. Semmler, and K. J. Wolf, “Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits,” Invest. Radiol.35(8), 460–471 (2000). [CrossRef] [PubMed]
  14. J. Barkhausen, W. Ebert, C. Heyer, J. F. Debatin, and H. J. Weinmann, “Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging,” Circulation108(5), 605–609 (2003). [CrossRef] [PubMed]
  15. M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation109(23), 2890–2896 (2004). [CrossRef] [PubMed]
  16. J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med.40(6), 415–421 (2008). [CrossRef] [PubMed]
  17. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16(7), 4376–4393 (2008). [CrossRef] [PubMed]
  18. C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett.35(5), 700–702 (2010). [CrossRef] [PubMed]
  19. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett.8(10), 3461–3467 (2008). [CrossRef] [PubMed]
  20. B. Bonnemain, “Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review,” J. Drug Target.6(3), 167–174 (1998). [CrossRef] [PubMed]
  21. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84(6), 4023–4032 (2003). [CrossRef] [PubMed]
  22. T. Akkin, D. P. Davé, J. I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med.33(4), 219–225 (2003). [CrossRef] [PubMed]
  23. D. P. Davé and T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett.25(4), 227–229 (2000). [CrossRef] [PubMed]
  24. K. Seo and T. Mura, “The Elastic Field in a Half Space Due to Ellipsoidal Inclusions With Uniform Dilatational Eigenstrains,” J. Appl. Mech.46(3), 568–572 (1979). [CrossRef]
  25. J. H. Davies, “Elastic Field in a Semi-Infinite Solid due to Thermal Expansion or a Coherently Misfitting Inclusion,” J. Appl. Mech.70(5), 655–660 (2003). [CrossRef]
  26. R. D. Mindlin and D. H. Cheng, “Thermoelastic Stress in the Semi-Infinite Solid,” J. Appl. Mech.21, 931–933 (1950).
  27. J. N. Goodiee, “XCVII. On the integration of the thermo-elastic equations,” in Philosophical Magazine Series 7(Taylor & Francis, 1937), pp. 1017–1032.
  28. S. Liu, M. J. Rodgers, Q. Wang, and L. M. Keer, “A Fast and Effective Method for Transient Thermoelastic Displacement Analyses,” J. Tribol.123(3), 479–485 (2001). [CrossRef]
  29. L. Yu, M. Huang, M. Chen, W. Chen, W. Huang, and Z. Zhu, “Quasi-discrete Hankel transform,” Opt. Lett.23(6), 409–411 (1998). [CrossRef] [PubMed]
  30. M. Guizar-Sicairos and J. C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A21(1), 53–58 (2004). [CrossRef] [PubMed]
  31. F. D. Kolodgie, A. S. Katocs, E. E. Largis, S. M. Wrenn, J. F. Cornhill, E. E. Herderick, S. J. Lee, and R. Virmani, “Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type,” Arterioscler. Thromb. Vasc. Biol.16(12), 1454–1464 (1996). [CrossRef] [PubMed]
  32. R. Weissleder, J. F. Heautot, B. K. Schaffer, N. Nossiff, M. I. Papisov, A. Bogdanov, and T. J. Brady, “MR lymphography: study of a high-efficiency lymphotrophic agent,” Radiology191(1), 225–230 (1994). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited