OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 2 — Feb. 1, 2014
  • pp: 499–514

Orientation-independent rapid pulsatile flow measurement using dual-angle Doppler OCT

Lindsy M Peterson, Shi Gu, Michael W Jenkins, and Andrew M Rollins  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 2, pp. 499-514 (2014)
http://dx.doi.org/10.1364/BOE.5.000499


View Full Text Article

Enhanced HTML    Acrobat PDF (1348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Doppler OCT (DOCT) can provide blood flow velocity information which is valuable for investigation of microvascular structure and function. However, DOCT is only sensitive to motion parallel with the imaging beam, so that knowledge of flow direction is needed for absolute velocity determination. Here, absolute volumetric flow is calculated by integrating velocity components perpendicular to the B-scan plane. These components are acquired using two illumination beams with a predetermined angular separation, produced by a delay encoded technique. This technology enables rapid pulsatile flow measurement from single B-scans without the need for 3-D volumetric data or knowledge of blood vessel orientation.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: November 12, 2013
Revised Manuscript: December 19, 2013
Manuscript Accepted: December 20, 2013
Published: January 15, 2014

Citation
Lindsy M Peterson, Shi Gu, Michael W Jenkins, and Andrew M Rollins, "Orientation-independent rapid pulsatile flow measurement using dual-angle Doppler OCT," Biomed. Opt. Express 5, 499-514 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-2-499


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res.41(1), 87–99 (1999). [CrossRef] [PubMed]
  2. M. L. A. Broekhuizen, B. Hogers, M. C. DeRuiter, R. E. Poelmann, A. C. Gittenberger-de Groot, and J. W. Wladimiroff, “Altered hemodynamics in chick embryos after extraembryonic venous obstruction,” Ultrasound Obstet. Gynecol.13(6), 437–445 (1999). [CrossRef] [PubMed]
  3. J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003). [CrossRef] [PubMed]
  4. M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003). [CrossRef] [PubMed]
  5. J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003). [CrossRef] [PubMed]
  6. B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk, M. Baiker, M. J. B. M. Pourquie, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Changes in Shear Stress-Related Gene Expression After Experimentally Altered Venous Return in the Chicken Embryo,” Circ. Res.96(12), 1291–1298 (2005). [CrossRef] [PubMed]
  7. N. Azuma, S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio, “Endothelial cell response to different mechanical forces,” J. Vasc. Surg.32(4), 789–794 (2000). [CrossRef] [PubMed]
  8. R. J. Dekker, S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. G. Horrevoets, “Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2),” Blood100(5), 1689–1698 (2002). [CrossRef] [PubMed]
  9. K. Yashiro, H. Shiratori, and H. Hamada, “Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch,” Nature450(7167), 285–288 (2007). [CrossRef] [PubMed]
  10. R. E. Poelmann, A. C. Gittenberger-de Groot, and B. P. Hierck, “The development of the heart and microcirculation: role of shear stress,” Med. Biol. Eng. Comput.46(5), 479–484 (2008). [CrossRef] [PubMed]
  11. J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through Klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol.7(11), e1000246 (2009). [CrossRef] [PubMed]
  12. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express15(10), 6251–6267 (2007). [CrossRef] [PubMed]
  13. M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt.15(6), 066022 (2010). [CrossRef] [PubMed]
  14. M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Longitudinal Imaging of Heart Development With Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron.18(3), 1166–1175 (2012). [CrossRef]
  15. L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express3(11), 3022–3032 (2012). [CrossRef] [PubMed]
  16. A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the Chick Embryonic Heart Outflow Tract at HH18 Using 4D Optical Coherence Tomography Imaging and Computational Modeling,” PLoS ONE7(7), e40869 (2012). [CrossRef] [PubMed]
  17. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997). [CrossRef] [PubMed]
  18. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997). [CrossRef] [PubMed]
  19. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett.25(19), 1448–1450 (2000). [CrossRef] [PubMed]
  20. G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express3(10), 2669–2680 (2012). [CrossRef] [PubMed]
  21. A. Davis, J. Izatt, and F. Rothenberg, “Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry,” Anat. Rec. (Hoboken)292(3), 311–319 (2009). [CrossRef] [PubMed]
  22. P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012). [CrossRef] [PubMed]
  23. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.12(4), 041215 (2007). [CrossRef] [PubMed]
  24. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011). [CrossRef] [PubMed]
  25. R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213 (2007). [CrossRef] [PubMed]
  26. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008). [CrossRef] [PubMed]
  27. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008). [CrossRef] [PubMed]
  28. Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009). [CrossRef] [PubMed]
  29. J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012). [CrossRef] [PubMed]
  30. D. P. Davé and T. E. Milner, “Doppler-angle measurement in highly scattering media,” Opt. Lett.25(20), 1523–1525 (2000). [CrossRef] [PubMed]
  31. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett.32(5), 506–508 (2007). [CrossRef] [PubMed]
  32. Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007). [CrossRef] [PubMed]
  33. N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express16(18), 13624–13636 (2008). [CrossRef] [PubMed]
  34. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008). [CrossRef] [PubMed]
  35. C. Blatter, S. Coquoz, B. Grajciar, A. S. G. Singh, M. Bonesi, R. M. Werkmeister, L. Schmetterer, and R. A. Leitgeb, “Dove prism based rotating dual beam bidirectional Doppler OCT,” Biomed. Opt. Express4(7), 1188–1203 (2013). [CrossRef] [PubMed]
  36. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with Optical Coherence Tomography,” Opt. Express18(3), 2477–2494 (2010). [CrossRef] [PubMed]
  37. W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012). [CrossRef] [PubMed]
  38. T. Schmoll and R. A. Leitgeb, “Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow,” J. Biophotonics6(3), 275–282 (2013). [CrossRef] [PubMed]
  39. M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express17(13), 10786–10799 (2009). [CrossRef] [PubMed]
  40. M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An Approach to Measure Blood Flow in Single Choroidal Vessel Using Doppler Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012). [CrossRef] [PubMed]
  41. Z. Hu and A. Rollins, “Quasi-telecentric optical design of a microscope-compatible OCT scanner,” Opt. Express13(17), 6407–6415 (2005). [CrossRef] [PubMed]
  42. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett.32(24), 3525–3527 (2007). [CrossRef] [PubMed]
  43. C. Blatter, B. Grajciar, L. Schmetterer, and R. A. Leitgeb, “Angle independent flow assessment with bidirectional Doppler optical coherence tomography,” Opt. Lett.38(21), 4433–4436 (2013). [CrossRef] [PubMed]
  44. G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” Am. J. Ophthalmol.137(1), 156–169 (2004). [CrossRef] [PubMed]
  45. P. Jindahra, T. R. Hedges, C. E. Mendoza-Santiesteban, and G. T. Plant, “Optical coherence tomography of the retina: applications in neurology,” Curr. Opin. Neurol.23(1), 16–23 (2010). [CrossRef] [PubMed]
  46. E. Friedman, S. Krupsky, A. M. Lane, S. S. Oak, E. S. Friedman, K. Egan, and E. S. Gragoudas, “Ocular Blood Flow Velocity in Age-Related Macular Degeneration,” Ophthalmology102(4), 640–646 (1995). [CrossRef] [PubMed]
  47. H. Remsch, C. W. Spraul, G. K. Lang, and G. E. Lang, “Changes of retinal capillary blood flow in age-related maculopathy,” Graefes Arch. Clin. Exp. Ophthalmol.238(12), 960–964 (2000). [CrossRef] [PubMed]
  48. A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010). [CrossRef] [PubMed]
  49. J. Flammer, “The vascular concept of glaucoma,” Surv. Ophthalmol.38(Suppl), S3–S6 (1994). [CrossRef] [PubMed]
  50. J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002). [CrossRef] [PubMed]
  51. K. Sakata, H. Funatsu, S. Harino, H. Noma, and S. Hori, “Relationship between Macular Microcirculation and Progression of Diabetic Macular Edema,” Ophthalmology113(8), 1385–1391 (2006). [CrossRef] [PubMed]
  52. G. Landa, W. Amde, Y. Haileselassie, and R. B. Rosen, “Cilioretinal Arteries in Diabetic Eyes Are Associated With Increased Retinal Blood Flow Velocity and Occurrence of Diabetic Macular Edema,” Retina31(2), 304–311 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited