OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 2 — Feb. 1, 2014
  • pp: 515–538

Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe

Sergio Coda, Alex J. Thompson, Gordon T. Kennedy, Kim L. Roche, Lakshmana Ayaru, Devinder S. Bansi, Gordon W. Stamp, Andrew V. Thillainayagam, Paul M. W. French, and Chris Dunsby  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 2, pp. 515-538 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3478 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an ex vivo study of temporally and spectrally resolved autofluorescence in a total of 47 endoscopic excision biopsy/resection specimens from colon, using pulsed excitation laser sources operating at wavelengths of 375 nm and 435 nm. A paired analysis of normal and neoplastic (adenomatous polyp) tissue specimens obtained from the same patient yielded a significant difference in the mean spectrally averaged autofluorescence lifetime −570 ± 740 ps (p = 0.021, n = 12). We also investigated the fluorescence signature of non-neoplastic polyps (n = 6) and inflammatory bowel disease (n = 4) compared to normal tissue in a small number of specimens.

© 2014 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.2680) Medical optics and biotechnology : Gastrointestinal
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Optics in Cancer Research

Original Manuscript: July 31, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: November 26, 2013
Published: January 16, 2014

Virtual Issues
Optical Molecular Probes, Imaging, and Drug Delivery (2013) Biomedical Optics Express

Sergio Coda, Alex J. Thompson, Gordon T. Kennedy, Kim L. Roche, Lakshmana Ayaru, Devinder S. Bansi, Gordon W. Stamp, Andrew V. Thillainayagam, Paul M. W. French, and Chris Dunsby, "Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe," Biomed. Opt. Express 5, 515-538 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Lambert, H. Saito, and Y. Saito, “High-resolution endoscopy and early gastrointestinal cancer...dawn in the East,” Endoscopy39(3), 232–237 (2007). [CrossRef] [PubMed]
  2. P. Boyle and B. Levin, World Cancer Report 2008 (World Health Organisation - International Agency for Research on Cancer, Geneva, 2008).
  3. S. H. Taplin, W. Barlow, N. Urban, M. T. Mandelson, D. J. Timlin, L. Ichikawa, and P. Nefcy, “Stage, age, comorbidity, and direct costs of colon, prostate, and breast cancer care,” J. Natl. Cancer Inst.87(6), 417–426 (1995). [CrossRef] [PubMed]
  4. B. Vogelstein, E. R. Fearon, S. R. Hamilton, S. E. Kern, A. C. Preisinger, M. Leppert, Y. Nakamura, R. White, A. M. Smits, and J. L. Bos, “Genetic Alterations during Colorectal-Tumor Development,” N. Engl. J. Med.319(9), 525–532 (1988). [CrossRef] [PubMed]
  5. D. K. Rex, “Risks and potential cost savings of not sending diminutive polyps for histologic examination,” Gastroenterol Hepatol (N Y)8(2), 128–130 (2012). [PubMed]
  6. A. Hotouras, P. Collins, W. Speake, G. Tierney, J. N. Lund, and M. A. Thaha, “Diagnostic yield and economic implications of endoscopic colonic biopsies in patients with chronic diarrhoea,” Colorectal Dis.14(8), 985–988 (2012). [CrossRef] [PubMed]
  7. S. S. Cross and J. L. Stone, “Proactive management of histopathology workloads: analysis of the UK Royal College of Pathologists’ recommendations on specimens of limited or no clinical value on the workload of a teaching hospital gastrointestinal pathology service,” J. Clin. Pathol.55(11), 850–852 (2002). [CrossRef] [PubMed]
  8. K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt.9(3), 568–577 (2004). [CrossRef] [PubMed]
  9. N. Nakaniwa, A. Namihisa, T. Ogihara, A. Ohkawa, S. Abe, A. Nagahara, O. Kobayashi, J. Sasaki, and N. Sato, “Newly developed autofluorescence imaging videoscope system for the detection of colonic neoplasms,” Dig. Endosc.17(3), 235–240 (2005). [CrossRef]
  10. R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology127(3), 706–713 (2004). [CrossRef] [PubMed]
  11. T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. Liu, J. M. Crawford, and C. H. Contag, “Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology,” Clin. Gastroenterol. Hepatol.5(11), 1300–1305 (2007). [CrossRef] [PubMed]
  12. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology120(7), 1620–1629 (2001). [CrossRef] [PubMed]
  13. M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology119(3), 677–682 (2000). [CrossRef] [PubMed]
  14. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt.38(31), 6628–6637 (1999). [CrossRef] [PubMed]
  15. L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut55(8), 1078–1083 (2005). [CrossRef] [PubMed]
  16. X. Shao, W. Zheng, and Z. Huang, “Polarized near-infrared autofluorescence imaging combined with near-infrared diffuse reflectance imaging for improving colonic cancer detection,” Opt. Express18(23), 24293–24300 (2010). [CrossRef] [PubMed]
  17. M. G. Shim, L. M. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol.72(1), 146–150 (2000). [PubMed]
  18. S. Duraipandian, M. Sylvest Bergholt, W. Zheng, K. Yu Ho, M. Teh, K. Guan Yeoh, J. Bok Yan So, A. Shabbir, and Z. Huang, “Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination,” J. Biomed. Opt.17(8), 081418 (2012). [CrossRef] [PubMed]
  19. G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998). [PubMed]
  20. M. A. Mycek and B. W. Pogue, Handbook of Biomedical Fluorescence (Taylor & Francis, New York, 2003).
  21. M. A. Mycek, K. T. Schomacker, and N. S. Nishioka, “Colonic polyp differentiation using time-resolved autofluorescence spectroscopy,” Gastrointest. Endosc.48(4), 390–394 (1998). [CrossRef] [PubMed]
  22. L. Marcu, P. Butte, W. H. Yong, R. C. Thompson, K. L. Black, and B. Pikul, “Diagnosis of human brain tumor by lifetime fluorescence spectroscopy,” in 23rd Annual Meeting of the American-Society-for-Laser-Medicine-and-Surgery, Surgical Applications (Lasers in Surgery and Medicine, 2003), p. 51.
  23. L. Marcu, “Fluorescence lifetime techniques in medical applications,” Ann. Biomed. Eng.40(2), 304–331 (2012). [CrossRef] [PubMed]
  24. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia2(1/2), 89–117 (2000). [CrossRef] [PubMed]
  25. P. A. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. W. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007). [CrossRef] [PubMed]
  26. A. J. Thompson, S. Coda, M. B. Sørensen, G. Kennedy, R. Patalay, U. Waitong-Brämming, P. A. A. De Beule, M. A. A. Neil, S. Andersson-Engels, N. Bendsøe, P. M. W. French, K. Svanberg, and C. Dunsby, “In vivo measurements of diffuse reflectance and time-resolved autofluorescence emission spectra of basal cell carcinomas,” J. Biophotonics5(3), 240–254 (2012). [CrossRef] [PubMed]
  27. C. R. Kapadia, F. W. Cutruzzola, K. M. O’Brien, M. L. Stetz, R. Enriquez, and L. I. Deckelbaum, “Laser-induced fluorescence spectroscopy of human colonic mucosa. Detection of adenomatous transformation,” Gastroenterology99(1), 150–157 (1990). [PubMed]
  28. R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem. Photobiol.53(6), 777–786 (1991). [PubMed]
  29. Y. Yang, G. C. Tang, M. Bessler, and R. R. Alfano, “Fluorescence spectroscopy as a photonic pathology method for detecting colon cancer,” Lasers Life Sci.6, 259–276 (1995).
  30. C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and delta aminolevulinic acid sensitisation,” Gut44(4), 511–518 (1999). [CrossRef] [PubMed]
  31. R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, and R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc.36(2), 105–111 (1990). [CrossRef] [PubMed]
  32. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, T. F. Deutsch, and N. S. Nishioka, “Ultraviolet laser-induced fluorescence of colonic polyps,” Gastroenterology102(4 Pt 1), 1155–1160 (1992). [PubMed]
  33. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med.12(1), 63–78 (1992). [CrossRef] [PubMed]
  34. R. M. Cothren, M. V. Sivak, J. Van Dam, R. E. Petras, M. Fitzmaurice, J. M. Crawford, J. Wu, J. F. Brennan, R. P. Rava, R. Manoharan, and M. S. Feld, “Detection of dysplasia at colonoscopy using laser-induced fluorescence: a blinded study,” Gastrointest. Endosc.44(2), 168–176 (1996). [CrossRef] [PubMed]
  35. B. Mayinger, P. Horner, M. Jordan, C. Gerlach, T. Horbach, W. Hohenberger, and E. G. Hahn, “Light-induced autofluorescence spectroscopy for tissue diagnosis of GI lesions,” Gastrointest. Endosc.52(3), 395–400 (2000). [CrossRef] [PubMed]
  36. B. Mayinger, P. Horner, M. Jordan, C. Gerlach, T. Horbach, W. Hohenberger, and E. G. Hahn, “Light-induced autofluorescence spectroscopy for the endoscopic detection of esophageal cancer,” Gastrointest. Endosc.54(2), 195–201 (2001). [CrossRef] [PubMed]
  37. B. Mayinger, M. Jordan, T. Horbach, P. Horner, C. Gerlach, S. Mueller, W. Hohenberger, and E. G. Hahn, “Evaluation of in vivo endoscopic autofluorescence spectroscopy in gastric cancer,” Gastrointest. Endosc.59(2), 191–198 (2004). [CrossRef] [PubMed]
  38. B. W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A. M. Raczyńska, J. Winczakiewicz, and J. Dobber, “Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques,” Lasers Surg. Med.21(2), 149–158 (1997). [CrossRef] [PubMed]
  39. B. W. Chwirot, Z. Michniewicz, M. Kowalska, and J. Nussbeutel, “Detection of colonic malignant lesions by digital imaging of UV laser-induced autofluorescence,” Photochem. Photobiol.69(3), 336–340 (1999). [CrossRef] [PubMed]
  40. S. D. Xiao, L. Zhong, H. Y. Luo, X. Y. Chen, and Y. Shi, “Autofluorescence imaging analysis of gastric cancer,” Chin. Dig. Dis.3(3), 95–98 (2002). [CrossRef]
  41. B. Lin, S. Urayama, R. M. G. Saroufeem, D. L. Matthews, and S. G. Demos, “Real-time microscopic imaging of esophageal epithelial disease with autofluorescence under ultraviolet excitation,” Opt. Express17(15), 12502–12509 (2009). [CrossRef] [PubMed]
  42. M. A. Kara, F. P. Peters, P. Fockens, F. J. ten Kate, and J. J. Bergman, “Endoscopic video-autofluorescence imaging followed by narrow band imaging for detecting early neoplasia in Barrett’s esophagus,” Gastrointest. Endosc.64(2), 176–185 (2006). [CrossRef] [PubMed]
  43. W. L. Curvers, R. Singh, L. M. Song, H. C. Wolfsen, K. Ragunath, K. Wang, M. B. Wallace, P. Fockens, and J. J. Bergman, “Endoscopic tri-modal imaging for detection of early neoplasia in Barrett’s oesophagus: a multi-center feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system,” Gut57(2), 167–172 (2008). [CrossRef] [PubMed]
  44. T. Glanzmann, J. P. Ballini, H. van den Bergh, and G. Wagnieres, “Time-resolved spectrofluorometer for clinical tissue characterization during endoscopy,” Rev. Sci. Instrum.70(10), 4067–4077 (1999). [CrossRef]
  45. J. D. Pitts and M. A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution,” Rev. Sci. Instrum.72(7), 3061–3072 (2001). [CrossRef]
  46. T. J. Pfefer, D. Y. Paithankar, J. M. Poneros, K. T. Schomacker, and N. S. Nishioka, “Temporally and spectrally resolved fluorescence spectroscopy for the detection of high grade dysplasia in Barrett’s esophagus,” Lasers Surg. Med.32(1), 10–16 (2003). [CrossRef] [PubMed]
  47. Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum.75(1), 151–162 (2004). [CrossRef]
  48. B. Li, Z. Zhang, and S. Xie, “Steady state and time-resolved autofluorescence studies of human colonic tissues,” Chin. Opt. Lett.4, 348–350 (2006).
  49. J. Mizeret, G. Wagnières, T. Stepinac, and H. Van Den Bergh, “Endoscopic tissue characterization by frequency-domain fluorescence lifetime imaging (FD-FLIM),” Lasers Med. Sci.12(3), 209–217 (1997). [CrossRef] [PubMed]
  50. J. McGinty, N. P. Galletly, C. Dunsby, I. Munro, D. S. Elson, J. Requejo-Isidro, P. Cohen, R. Ahmad, A. Forsyth, A. V. Thillainayagam, M. A. A. Neil, P. M. W. French, and G. W. Stamp, “Wide-field fluorescence lifetime imaging of cancer,” Biomed. Opt. Express1(2), 627–640 (2010). [CrossRef] [PubMed]
  51. J. A. Jo, L. Marcu, Q. Fang, T. Papaioannou, J. H. Qiao, M. C. Fishbein, B. Beseth, A. H. Dorafshar, T. Reil, D. Baker, and J. Freischlag, “New methods for time-resolved fluorescence spectroscopy data analysis based on the Laguerre expansion technique--applications in tissue diagnosis,” Methods Inf. Med.46(2), 206–211 (2007). [PubMed]
  52. J. S. P. Lumley, J. L. Craven, and J. T. Aitken, Essential Anatomy and Some Clinical Applications (Churchill Livingstone, Edinburgh-New York 1995).
  53. I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res.62(3), 682–687 (2002). [PubMed]
  54. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001). [CrossRef] [PubMed]
  55. S. Zhuo, J. Yan, G. Chen, J. Chen, Y. Liu, J. Lu, X. Zhu, X. Jiang, and S. Xie, “Label-free monitoring of colonic cancer progression using multiphoton microscopy,” Biomed. Opt. Express2(3), 615–619 (2011). [CrossRef] [PubMed]
  56. M. Hilska, Y. Collan, J. Peltonen, R. Gullichsen, H. Paajanen, and M. Laato, “The distribution of collagen types I, III, and IV in normal and malignant colorectal mucosa,” Eur. J. Surg.164(6), 457–464 (1998). [CrossRef] [PubMed]
  57. S. Zhuo, J. Yan, G. Chen, H. Shi, X. Zhu, J. Lu, J. Chen, and S. Xie, “Label-free imaging of basement membranes differentiates normal, precancerous, and cancerous colonic tissues by second-harmonic generation microscopy,” PLoS ONE7(6), e38655 (2012). [CrossRef] [PubMed]
  58. L. Marcu, D. Cohen, J.-M. I. Maarek, and W. S. Grundfest, “Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy,” in Optical Biopsy III, (SPIE, 2000), 93–101.
  59. J. M. Maarek, L. Marcu, W. J. Snyder, and W. S. Grundfest, “Time-resolved fluorescence spectra of arterial fluorescent compounds: reconstruction with the Laguerre expansion technique,” Photochem. Photobiol.71(2), 178–187 (2000). [CrossRef] [PubMed]
  60. H. B. Manning, M. B. Nickdel, K. Yamamoto, J. L. Lagarto, D. J. Kelly, C. B. Talbot, G. Kennedy, J. Dudhia, J. Lever, C. Dunsby, P. French, and Y. Itoh, “Detection of cartilage matrix degradation by autofluorescence lifetime,” Matrix Biol.32(1), 32–38 (2013). [CrossRef] [PubMed]
  61. H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem.280(26), 25119–25126 (2005). [CrossRef] [PubMed]
  62. D. Chorvat and A. Chorvatova, “Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues,” Laser Phys. Lett.6(3), 175–193 (2009). [CrossRef]
  63. S. Zhuo, L. Zheng, J. Chen, S. Xie, X. Zhu, and X. Jiang, “Depth-cumulated epithelial redox ratio and stromal collagen quantity as quantitative intrinsic indicators for differentiating normal, inflammatory, and dysplastic epithelial tissues,” Appl. Phys. Lett.97(17), 173701 (2010). [CrossRef]
  64. H. R. Williams, J. D. Willsmore, I. J. Cox, D. G. Walker, J. F. Cobbold, S. D. Taylor-Robinson, and T. R. Orchard, “Serum metabolic profiling in inflammatory bowel disease,” Dig. Dis. Sci.57(8), 2157–2165 (2012). [CrossRef] [PubMed]
  65. S. Zhuo, J. Chen, G. Wu, S. Xie, L. Zheng, X. Jiang, and X. Zhu, “Quantitatively linking collagen alteration and epithelial tumor progression by second harmonic generation microscopy,” Appl. Phys. Lett.96(21), 213704 (2010). [CrossRef]
  66. D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech.70(5), 410–419 (2007). [CrossRef] [PubMed]
  67. S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J.82(5), 2811–2825 (2002). [CrossRef] [PubMed]
  68. N. Nakashima, K. Yoshihara, F. Tanaka, and K. Yagi, “Picosecond fluorescence lifetime of the coenzyme of D-amino acid oxidase,” J. Biol. Chem.255(11), 5261–5263 (1980). [PubMed]
  69. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A.104(49), 19494–19499 (2007). [CrossRef] [PubMed]
  70. L. Ludeman, R. M. Valori, and N. A. Shepherd, “The Principles and Techniques of Biopsy: With Special Reference to Endoscopic Biopsy,” Surgery20, iii–vii (2002) (Medicine Publishing).
  71. G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples,” Lasers Surg. Med.30(3), 191–200 (2002). [CrossRef] [PubMed]
  72. J. A. Palero, A. N. Bader, H. S. de Bruijn, A. der Ploeg van den Heuvel, H. J. Sterenborg, and H. C. Gerritsen, “In vivo monitoring of protein-bound and free NADH during ischemia by nonlinear spectral imaging microscopy,” Biomed. Opt. Express2(5), 1030–1039 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited