OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 2 — Feb. 1, 2014
  • pp: 547–559

Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

Yifan Jian, Jing Xu, Martin A. Gradowski, Stefano Bonora, Robert J. Zawadzki, and Marinko V. Sarunic  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 2, pp. 547-559 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4572 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Active and Adaptive Optics

Original Manuscript: November 4, 2013
Revised Manuscript: January 12, 2014
Manuscript Accepted: January 12, 2014
Published: January 21, 2014

Yifan Jian, Jing Xu, Martin A. Gradowski, Stefano Bonora, Robert J. Zawadzki, and Marinko V. Sarunic, "Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice," Biomed. Opt. Express 5, 547-559 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. J. Donnelly and A. Roorda, “Optimal pupil size in the human eye for axial resolution,” J. Opt. Soc. Am. A20(11), 2010–2015 (2003). [CrossRef] [PubMed]
  2. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010). [CrossRef] [PubMed]
  3. D. R. Williams, “Imaging single cells in the living retina,” Vision Res.51(13), 1379–1396 (2011). [CrossRef] [PubMed]
  4. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(18), 2142–2144 (2004). [CrossRef] [PubMed]
  5. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005). [CrossRef] [PubMed]
  6. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express14(10), 4380–4394 (2006). [CrossRef] [PubMed]
  7. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express2(6), 1674–1686 (2011). [CrossRef] [PubMed]
  8. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express2(4), 748–763 (2011). [CrossRef] [PubMed]
  9. D. X. Hammer, R. D. Ferguson, M. Mujat, A. Patel, E. Plumb, N. Iftimia, T. Y. P. Chui, J. D. Akula, and A. B. Fulton, “Multimodal adaptive optics retinal imager: design and performance,” J. Opt. Soc. Am. A29(12), 2598–2607 (2012). [CrossRef] [PubMed]
  10. J. W. Evans, R. J. Zawadzki, S. M. Jones, S. S. Olivier, and J. S. Werner, “Error budget analysis for an adaptive optics optical coherence tomography system,” Opt. Express17(16), 13768–13784 (2009). [CrossRef] [PubMed]
  11. D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007). [CrossRef] [PubMed]
  12. Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express2(4), 717–738 (2011). [CrossRef] [PubMed]
  13. Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, and D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express3(4), 715–734 (2012). [CrossRef] [PubMed]
  14. A. Jesacher, and M. J. Booth. “Sensorless adaptive optics for microscopy,” in SPIE MOEMS-MEMS (Olivier, S. S., Bifano, T. G. & Kubby, J. A.) 79310G–9 (2011).
  15. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express19(15), 14160–14171 (2011). [CrossRef] [PubMed]
  16. D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin. “An adaptive optics biomicroscope for mouse retinal imaging,” in Proc. SPIE 6467(1), 646703 (SPIE, 2007).
  17. C. Alt, D. P. Biss, N. Tajouri, T. C. Jakobs, and C. P. Lin, “An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure,” Bios7550, 1–11 (2010).
  18. P. Villoresi, S. Bonora, M. Pascolini, L. Poletto, G. Tondello, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, “Optimization of high-order harmonic generation by adaptive control of a sub-10-fs pulse wave front,” Opt. Lett.29(2), 207–209 (2004). [CrossRef] [PubMed]
  19. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett.32(1), 5–7 (2007). [CrossRef] [PubMed]
  20. M. Minozzi, S. Bonora, A. V. Sergienko, G. Vallone, and P. Villoresi, “Optimization of two-photon wave function in parametric down conversion by adaptive optics control of the pump radiation,” Opt. Lett.38(4), 489–491 (2013). [CrossRef] [PubMed]
  21. R. J. S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in Adaptive Optics - Optical Coherence Tomography,” Opt. Lett.38(22), 4801 (2013). [CrossRef] [PubMed]
  22. Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt.18(5), 056007 (2013). [CrossRef] [PubMed]
  23. C. J. Kempf, M. A. Helmbrecht, and M. Besse. “Adaptive optics control system for segmented MEMS deformable mirrors,” in Proc. SPIE 7595, MEMS Adapt. Opt. IV (Olivier, S. S., Bifano, T. G. & Kubby, J. A.) 75950M–12 (2010).
  24. Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt.18(2), 026002 (2013). [CrossRef] [PubMed]
  25. J. Li, P. Bloch, J. Xu, M. V. Sarunic, and L. Shannon, “Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units,” Appl. Opt.50(13), 1832–1838 (2011). [CrossRef] [PubMed]
  26. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012). [CrossRef] [PubMed]
  27. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am.64(9), 1200 (1974). [CrossRef]
  28. L. Thibos, R. A. Applegate, J. T. Schwiegerling, and V. S. T. M. Webb, Robert. “Standards for reporting the optical aberrations of eyes - OSA Technical Digest,” in Vision Science and its Applications 35 232–244 (Optical Society of America, 2000).
  29. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express15(13), 8176–8190 (2007). [CrossRef] [PubMed]
  30. S. Tuohy and A. G. Podoleanu, “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor,” Opt. Express18(4), 3458–3476 (2010). [CrossRef] [PubMed]
  31. S. A. Rahman and M. J. Booth, “Direct wavefront sensing in adaptive optical microscopy using backscattered light,” Appl. Opt.52(22), 5523–5532 (2013). [CrossRef] [PubMed]
  32. M. Shaw, K. O’Holleran, and C. Paterson, “Investigation of the confocal wavefront sensor and its application to biological microscopy,” Opt. Express21(16), 19353–19362 (2013). [CrossRef] [PubMed]
  33. J. Wang, J.-F. Léger, J. Binding, A. C. Boccara, S. Gigan, and L. Bourdieu, “Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer,” Biomed. Opt. Express3(10), 2510–2525 (2012). [CrossRef] [PubMed]
  34. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A24(5), 1373–1383 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3944 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited