OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 2 — Feb. 1, 2014
  • pp: 562–572

Non-invasive fluorescence imaging under ambient light conditions using a modulated ICCD and laser diode

Banghe Zhu, John C. Rasmussen, and Eva M. Sevick-Muraca  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 2, pp. 562-572 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (6087 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One limitation of fluorescence molecular imaging that can limit clinical implementation and hamper small animal imaging is the inability to eliminate ambient light. Herein, we demonstrate the ability to conduct rapid non-invasive, far-red and near-infrared fluorescence imaging in living animals and a phantom under ambient light conditions using a modulated image intensified CCD (ICCD) and a laser diode operated in homodyne detection. By mapping AC amplitude from three planar images at varying phase delays, we show improvement in target-to-background ratios (TBR) and reasonable signal-to-noise ratios (SNR) over continuous wave measurements. The rapid approach can be used to accurately collect fluorescence in situations where ambient light cannot be spectrally conditioned or controlled, such as in the case of fluorescent molecular image-guided surgery.

© 2014 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(060.2630) Fiber optics and optical communications : Frequency modulation
(260.2510) Physical optics : Fluorescence

ToC Category:
Clinical Instrumentation

Original Manuscript: November 6, 2013
Revised Manuscript: January 22, 2014
Manuscript Accepted: January 22, 2014
Published: January 24, 2014

Banghe Zhu, John C. Rasmussen, and Eva M. Sevick-Muraca, "Non-invasive fluorescence imaging under ambient light conditions using a modulated ICCD and laser diode," Biomed. Opt. Express 5, 562-572 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Zhu, G. Wu, H. Robinson, N. Wilganowski, M. A. Hall, S. C. Ghosh, K. L. Pinkston, A. Azhdarinia, B. R. Harvey, and E. M. Sevick-Muraca, “Tumor Margin Detection Using Quantitative NIRF Molecular Imaging Targeting EpCAM Validated by Far Red Gene Reporter iRFP,” Mol. Imaging Biol.15(5), 560–568 (2013). [CrossRef] [PubMed]
  2. B. Zhu, J. C. Rasmussen, Y. Lu, and E. M. Sevick-Muraca, “Reduction of excitation light leakage to improve near-infrared fluorescence imaging for tissue surface and deep tissue imaging,” Med. Phys.37(11), 5961–5970 (2010). [CrossRef] [PubMed]
  3. B. Zhu and E. M. Sevick-Muraca, “Minimizing excitation light leakage and maximizing measurement sensitivity for molecular imaging with near-infrared fluorescence,” J. Innovative Opt. Health Sci.4(03), 301–307 (2011). [CrossRef]
  4. A. M. De Grand and J. V. Frangioni, “An operational near-infrared fluorescence imaging system prototype for large animal surgery,” Technol. Cancer Res. Treat.2(6), 553–562 (2003). [PubMed]
  5. G. Themelis, J. S. Yoo, K.-S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt, 14, 064012 (2009).
  6. C. H. Heath, N. L. Deep, L. N. Beck, K. E. Day, L. Sweeny, K. R. Zinn, C. C. Huang, and E. L. Rosenthal, “Use of Panitumumab-IRDye800 to Image Cutaneous Head and Neck Cancer in Mice,” Otolaryngol. Head Neck Surg.148(6), 982–990 (2013). [CrossRef] [PubMed]
  7. S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. van Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. van der Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. van de Velde, R. J. Baatenburg de Jong, and C. W. Löwik, “Optical image-guided surgery--where do we stand?” Mol. Imaging Biol.13(2), 199–207 (2011). [CrossRef] [PubMed]
  8. G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med.17(10), 1315–1319 (2011). [CrossRef] [PubMed]
  9. S. Keereweer, P. B. A. A. Van Driel, T. J. A. Snoeks, J. D. F. Kerrebijn, R. J. Baatenburg de Jong, A. L. Vahrmeijer, H. J. C. M. Sterenborg, and C. W. G. M. Löwik, “Optical Image-Guided Cancer Surgery: Challenges and Limitations,” Clin. Cancer Res.19(14), 3745–3754 (2013), doi:. [CrossRef] [PubMed]
  10. K. Sexton, S. C. Davis, D. McClatchy, P. A. Valdes, S. C. Kanick, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Pulsed-light imaging for fluorescence guided surgery under normal room lighting,” Opt. Lett.38(17), 3249–3252 (2013). [CrossRef] [PubMed]
  11. C. D. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol.59(1), R1–R64 (2014). [CrossRef] [PubMed]
  12. J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and Depth Penetration of Continuous Wave Versus Frequency-domain Photon Migration Near-Infrared Fluorescence Contrast-Enhanced Imaging,” Photochem. Photobiol.77(4), 420–430 (2003). [CrossRef] [PubMed]
  13. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol.48(12), 1701–1720 (2003). [CrossRef] [PubMed]
  14. C. D. Darne, Y. Lu, I. C. Tan, B. Zhu, J. C. Rasmussen, A. M. Smith, S. Yan, and E. M. Sevick-Muraca, “A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography,” Phys. Med. Biol.57(24), 8135–8152 (2012). [CrossRef] [PubMed]
  15. E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt.13, 041303 (2008).
  16. A. B. Thompson and E. M. Sevick-Muraca, “Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy,” J. Biomed. Opt.8(1), 111–120 (2003). [CrossRef] [PubMed]
  17. G. S. Filonov, K. D. Piatkevich, L.-M. Ting, J. Zhang, K. Kim, and V. V. Verkhusha, “Bright and stable near-infrared fluorescent protein for in vivo imaging,” Nat. Biotechnol.29(8), 757–761 (2011). [CrossRef] [PubMed]
  18. J. P. Houston, S. Ke, W. Wang, C. Li, and E. M. Sevick-Muraca, “Quality analysis of in vivo near-infrared fluorescence and conventional gamma images acquired using a dual-labeled tumor-targeting probe,” J. Biomed. Opt.10, 054010 (2005).
  19. K. Murthy, M. Aznar, C. J. Thompson, A. Loutfi, R. Lisbona, and J. H. Gagnon, “Results of preliminary clinical trials of the positron emission mammography system PEM-I: a dedicated breast imaging system producing glucose metabolic images using FDG,” J. Nucl. Med.41(11), 1851–1858 (2000). [PubMed]
  20. F. Meric-Bernstam, J. C. Rasmussen, S. Krishnamurthy, I. Tan, B. Zhu, J. L. Wagner, G. V. Babiera, E. A. Mittendorf, and E. M. Sevick-Muraca, “Toward nodal staging of axillary lymph node basins through intradermal administration of fluorescent imaging agents,” Biomed. Opt. Express5(1), 183–196 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited