OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 2 — Feb. 1, 2014
  • pp: 587–595

Temporal correlation of spontaneous hemodynamic activity in language areas measured with functional near-infrared spectroscopy

Jun Li and Lina Qiu  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 2, pp. 587-595 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2709 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Functional near-infrared spectroscopy (fNIRS) was used to investigate resting state connectivity of language areas including bilateral inferior frontal gyrus (IFG) and superior temporal gyrus (STG). Thirty-two subjects participated in the experiment, including twenty adults and twelve children. Spontaneous hemodynamic fluctuations were recorded, and then intra- and inter-hemispheric temporal correlations of these signals were computed. The correlations of all hemoglobin components were observed significantly higher for adults than children. Moreover, the differences for the STG were more significant than for the IFG. In the adult group, differences in the correlations between males and females were not significant. Our results suggest by measuring resting state intra- and inter-hemispheric correlations, fNIRS is able to provide qualitative and quantitative evaluation on the functioning of the cortical network.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5380) Medical optics and biotechnology : Physiology
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Neuroscience and Brain Imaging

Original Manuscript: November 5, 2013
Revised Manuscript: January 19, 2014
Manuscript Accepted: January 20, 2014
Published: January 24, 2014

Jun Li and Lina Qiu, "Temporal correlation of spontaneous hemodynamic activity in language areas measured with functional near-infrared spectroscopy," Biomed. Opt. Express 5, 587-595 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977). [CrossRef] [PubMed]
  2. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997). [CrossRef] [PubMed]
  3. G. Gratton and M. Fabiani, “Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity,” Psychon. Bull. Rev.5(4), 535–563 (1998). [CrossRef]
  4. M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002). [CrossRef] [PubMed]
  5. Y. Hoshi, “Functional near-infrared optical imaging: Utility and limitations in human brain mapping,” Psychophysiology40(4), 511–520 (2003). [CrossRef] [PubMed]
  6. E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007). [CrossRef] [PubMed]
  7. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007). [CrossRef] [PubMed]
  8. T. Funane, M. Kiguchi, H. Atsumori, H. Sato, K. Kubota, and H. Koizumi, “Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy,” J. Biomed. Opt.16(7), 077011 (2011). [CrossRef] [PubMed]
  9. V. Quaresima, S. Bisconti, and M. Ferrari, “A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults,” Brain Lang.121(2), 79–89 (2012). [CrossRef] [PubMed]
  10. P. Y. Lin, S. I. Lin, T. Penney, and J. J. Chen, “Applications of Near Infrared Spectroscopy and Imaging for Motor Rehabilitation in Stroke Patients,” J. Med. Biol. Eng.29, 210–221 (2009).
  11. B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med.34(4), 537–541 (1995). [CrossRef] [PubMed]
  12. M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: A network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A.100(1), 253–258 (2003). [CrossRef] [PubMed]
  13. H. D. Xiang, H. M. Fonteijn, D. G. Norris, and P. Hagoort, “Topographical functional connectivity pattern in the perisylvian language networks,” Cereb. Cortex20(3), 549–560 (2010). [CrossRef] [PubMed]
  14. D. A. Fair, A. L. Cohen, N. U. Dosenbach, J. A. Church, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. U.S.A.105(10), 4028–4032 (2008). [CrossRef] [PubMed]
  15. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage47(1), 148–156 (2009). [CrossRef] [PubMed]
  16. C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods186(2), 242–249 (2010). [CrossRef] [PubMed]
  17. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express1(1), 324–336 (2010). [CrossRef] [PubMed]
  18. H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage55(2), 607–615 (2011). [CrossRef] [PubMed]
  19. L. Duan, Y. J. Zhang, and C. Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: A simultaneous recording study,” Neuroimage60(4), 2008–2018 (2012). [CrossRef] [PubMed]
  20. F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci.30(14), 4877–4882 (2010). [CrossRef] [PubMed]
  21. P. Hagmann, L. Cammoun, R. Martuzzi, P. Maeder, S. Clarke, J. P. Thiran, and R. Meuli, “Hand Preference and Sex Shape the Architecture of Language Networks,” Hum. Brain Mapp.27(10), 828–835 (2006). [CrossRef] [PubMed]
  22. N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition92(1-2), 145–177 (2004). [CrossRef] [PubMed]
  23. M. A. Gernsbacher and M. P. Kaschak, “Neuroimaging Studies of Language Production and Comprehension,” Annu. Rev. Psychol.54(1), 91–114 (2003). [CrossRef] [PubMed]
  24. R. C. Martin, “Language Processing: Functional Organization and Neuroanatomical Basis,” Annu. Rev. Psychol.54(1), 55–89 (2003). [CrossRef] [PubMed]
  25. I. Dinstein, K. Pierce, L. Eyler, S. Solso, R. Malach, M. Behrmann, and E. Courchesne, “Disrupted neural synchronization in toddlers with autism,” Neuron70(6), 1218–1225 (2011). [CrossRef] [PubMed]
  26. I. E. C. Sommer, A. Aleman, A. Bouma, and R. S. Kahn, “Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies,” Brain127(8), 1845–1852 (2004). [CrossRef] [PubMed]
  27. M. Wallentin, “Putative sex differences in verbal abilities and language cortex: a critical review,” Brain Lang.108(3), 175–183 (2009). [CrossRef] [PubMed]
  28. A. Hyvärinen and E. Oja, “Independent Component Analysis: Algorithms and Applications,” Neural Netw.13(4-5), 411–430 (2000). [CrossRef] [PubMed]
  29. J. A. Frost, J. R. Binder, J. A. Springer, T. A. Hammeke, P. S. F. Bellgowan, S. M. Rao, and R. W. Cox, “Language processing is strongly left lateralized in both sexes. Evidence from functional MRI,” Brain122(2), 199–208 (1999). [CrossRef] [PubMed]
  30. K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?” Neuroimage44(3), 893–905 (2009). [CrossRef] [PubMed]
  31. L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage56(3), 1362–1371 (2011). [CrossRef] [PubMed]
  32. L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage59(3), 2518–2528 (2012). [CrossRef] [PubMed]
  33. L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014). [CrossRef] [PubMed]
  34. A. D. Friederici, J. Brauer, and G. Lohmann, “Maturation of the language network: from inter- to intrahemispheric connectivities,” PLoS ONE6(6), e20726 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited