OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 2 — Feb. 1, 2014
  • pp: 630–642

Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes

Veronika Doblhoff-Dier, Leopold Schmetterer, Walthard Vilser, Gerhard Garhöfer, Martin Gröschl, Rainer A. Leitgeb, and René M. Werkmeister  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 2, pp. 630-642 (2014)
http://dx.doi.org/10.1364/BOE.5.000630


View Full Text Article

Enhanced HTML    Acrobat PDF (2312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a system capable of measuring the total retinal blood flow using a combination of dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes and a fundus camera-based retinal vessel analyzer. Our results show a high degree of conformity of venous and arterial flows, which corroborates the validity of the measurements. In accordance with Murray’s law, the log-log regression coefficient between vessel diameter and blood flow was found to be ~3. The blood’s velocity scaled linearly with the vessel diameter at higher diameters (> 60 µm), but showed a clear divergence from the linear dependence at lower diameters. Good agreement with literature data and the large range and high measurement sensitivity point to a high potential for further investigations.

© 2014 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(280.2490) Remote sensing and sensors : Flow diagnostics
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: October 23, 2013
Revised Manuscript: December 11, 2013
Manuscript Accepted: December 12, 2013
Published: January 28, 2014

Citation
Veronika Doblhoff-Dier, Leopold Schmetterer, Walthard Vilser, Gerhard Garhöfer, Martin Gröschl, Rainer A. Leitgeb, and René M. Werkmeister, "Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes," Biomed. Opt. Express 5, 630-642 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-2-630


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Pemp and L. Schmetterer, “Ocular blood flow in diabetes and age-related macular degeneration,” Canadian J. Ophthalmol.43, 295–301 (2008).
  2. A. P. Cherecheanu, G. Garhofer, D. Schmidl, R. Werkmeister, and L. Schmetterer, “Ocular perfusion pressure and ocular blood flow in glaucoma,” Curr. Opin. Pharmacol.13(1), 36–42 (2013). [CrossRef] [PubMed]
  3. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett.29(2), 171–173 (2004). [CrossRef] [PubMed]
  4. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003). [CrossRef] [PubMed]
  5. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett.32(5), 506–508 (2007). [CrossRef] [PubMed]
  6. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008). [CrossRef] [PubMed]
  7. A. S. G. Singh, C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express1(4), 1047–1058 (2010). [CrossRef] [PubMed]
  8. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008). [CrossRef] [PubMed]
  9. R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213 (2007). [CrossRef] [PubMed]
  10. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with Optical Coherence Tomography,” Opt. Express18(3), 2477–2494 (2010). [CrossRef] [PubMed]
  11. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011). [CrossRef] [PubMed]
  12. T. Schmoll and R. A. Leitgeb, “Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow,” J. Biophotonics6(3), 275–282 (2013). [CrossRef] [PubMed]
  13. N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express16(18), 13624–13636 (2008). [CrossRef] [PubMed]
  14. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008). [CrossRef] [PubMed]
  15. C. Blatter, S. Coquoz, B. Grajciar, A. S. G. Singh, M. Bonesi, R. M. Werkmeister, L. Schmetterer, and R. A. Leitgeb, “Dove prism based rotating dual beam bidirectional Doppler OCT,” Biomed. Opt. Express4(7), 1188–1203 (2013). [CrossRef] [PubMed]
  16. C. Blatter, B. Grajciar, L. Schmetterer, and R. A. Leitgeb, “Angle independent flow assessment with bidirectional Doppler OCT,” Opt. Lett.in press.
  17. W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt.18(11), 116010 (2013). [CrossRef] [PubMed]
  18. R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of Absolute Blood Flow Velocity and Blood Flow in the Human Retina by Dual-Beam Bidirectional Doppler Fourier-Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci.53(10), 6062–6071 (2012). [CrossRef] [PubMed]
  19. C. E. Riva, G. T. Feke, B. Eberli, and V. Benary, “Bidirectional LDV system for absolute measurement of blood speed in retinal vessels,” Appl. Opt.18(13), 2301–2306 (1979). [CrossRef] [PubMed]
  20. V. V. Tuchin, Optical Clearing of Tissues and Blood, SPIE Press Monograph, (SPIE Publications, Bellingham, WA, 2005), Vol. PM154.
  21. S. Norrby, P. Piers, C. Campbell, and M. van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt.46(26), 6595–6605 (2007). [CrossRef] [PubMed]
  22. International Electrotechnical Commission, “Safety of laser products - Part 1: Equipment classification and requirements,” IEC (EN) 60825–1 Ed. 2 (2001)
  23. K. Polak, G. Dorner, B. Kiss, E. Polska, O. Findl, G. Rainer, H. G. Eichler, and L. Schmetterer, “Evaluation of the Zeiss retinal vessel analyser,” Br. J. Ophthalmol.84(11), 1285–1290 (2000). [CrossRef] [PubMed]
  24. A. Gullstrand, “The dioptrics of the eye,” in Helmholtz’s Treatise on Physiological Optics, J. P. C. Southall, ed. (Optical Society of America, 1924), pp. 351–352.
  25. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006). [CrossRef] [PubMed]
  26. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express17(5), 4166–4176 (2009). [CrossRef] [PubMed]
  27. R. M. Werkmeister, S. Palkovits, R. Told, M. Gröschl, R. A. Leitgeb, G. Garhöfer, and L. Schmetterer, “Response of Retinal Blood Flow to Systemic Hyperoxia as Measured with Dual-Beam Bidirectional Doppler Fourier-Domain Optical Coherence Tomography,” PLoS ONE7(9), e45876 (2012). [CrossRef] [PubMed]
  28. C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.26(8), 1124–1132 (1985). [PubMed]
  29. G. T. Feke, H. Tagawa, D. M. Deupree, D. G. Goger, J. Sebag, and J. J. Weiter, “Blood flow in the normal human retina,” Invest. Ophthalmol. Vis. Sci.30(1), 58–65 (1989). [PubMed]
  30. G. Garhofer, R. Werkmeister, N. Dragostinoff, and L. Schmetterer, “Retinal Blood Flow in Healthy Young Subjects,” Invest. Ophthalmol. Vis. Sci.53(2), 698–703 (2012). [CrossRef] [PubMed]
  31. S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm,” J. Korean Phys. Soc.55(6), 2354–2360 (2009). [CrossRef] [PubMed]
  32. G. T. Feke, D. G. Goger, H. Tagawa, and F. C. Delori, “Laser Doppler Technique for Absolute Measurement of Blood Speed in Retinal Vessels,” IEEE Trans. Biomed. Eng.34(9), 673–800 (1987). [CrossRef] [PubMed]
  33. J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci.33(2), 356–363 (1992). [PubMed]
  34. J. E. Grunwald, J. DuPont, and C. E. Riva, “Retinal haemodynamics in patients with early diabetes mellitus,” Br. J. Ophthalmol.80(4), 327–331 (1996). [CrossRef] [PubMed]
  35. B. Pemp, E. Polska, G. Garhofer, M. Bayerle-Eder, A. Kautzky-Willer, and L. Schmetterer, “Retinal blood flow in type 1 diabetic patients with no or mild diabetic retinopathy during euglycemic clamp,” Diabetes Care33(9), 2038–2042 (2010). [CrossRef] [PubMed]
  36. E. Polska, K. Kircher, P. Ehrlich, P. V. Vecsei, and L. Schmetterer, “RI in central retinal artery as assessed by CDI does not correspond to retinal vascular resistance,” Am. J. Physiol. Heart Circ. Physiol.280(4), H1442–H1447 (2001). [PubMed]
  37. G. Garhofer, T. Bek, A. G. Boehm, D. Gherghel, J. Grunwald, P. Jeppesen, H. Kergoat, K. Kotliar, I. Lanzl, J. V. Lovasik, E. Nagel, W. Vilser, S. Orgul, L. Schmetterer, and Ocular Blood Flow Research Association, “Use of the retinal vessel analyzer in ocular blood flow research,” Acta Ophthalmol. (Copenh.)88(7), 717–722 (2010). [CrossRef] [PubMed]
  38. R. Fahraeus and T. Lindqvist, “The viscosity of the blood in narrow capillary tubes,” Am. J. Physiol.96, 562–568 (1931).
  39. T. W. Secomb and A. R. Pries, “Blood viscosity in microvessels: Experiment and theory,” C. R. Phys.14(6), 470–478 (2013). [CrossRef]
  40. E. Logean, L. Schmetterer, and C. E. Riva, “Velocity Profile of Red Blood Cells in Human Retinal Vessels using Confocal Scanning Laser Doppler Velocimetry,” Laser Phys.13, 45–51 (2003).
  41. J. P. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res.34(5), 295–299 (2002). [CrossRef] [PubMed]
  42. Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009). [CrossRef] [PubMed]
  43. Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011). [CrossRef] [PubMed]
  44. C. D. Murray, “The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume,” Proc. Natl. Acad. Sci. U.S.A.12(3), 207–214 (1926). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited