OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 664–674

Retinal cell imaging in myopic chickens using adaptive optics multiphoton microscopy

Juan M. Bueno, Raquel Palacios, Anastasia Giakoumaki, Emilio J. Gualda, Frank Schaeffel, and Pablo Artal  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 3, pp. 664-674 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1734 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Abnormal eye growth induced by visual deprivation can modify the structure and density of the retinal cells. We have used an adaptive optics multiphoton microscope to image photoreceptors (PRs) and ganglion cells (GCs) at different retinal locations in unstained retinas of chicken eyes with about 10D of myopia and their normal-sighted fellow eyes. In all samples, the local averaged inter-PR distance increased with eccentricity. No significant differences in PR density were found between control and myopic eyes. GC density declined in myopic eyes compared to control eyes and the inter-cell distance increased. In normal eyes, the size of the GC cell bodies increased approximately two-fold between the area centralis and the peripheral retina. In myopic eyes, this trend was preserved but the GC bodies were larger at each retinal location, compared to control eyes. Obviously, GC morphology is changing when the retinal area is enlarged in myopic eyes.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(180.4315) Microscopy : Nonlinear microscopy
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

Original Manuscript: December 17, 2013
Revised Manuscript: January 30, 2014
Manuscript Accepted: January 31, 2014
Published: February 7, 2014

Juan M. Bueno, Raquel Palacios, Anastasia Giakoumaki, Emilio J. Gualda, Frank Schaeffel, and Pablo Artal, "Retinal cell imaging in myopic chickens using adaptive optics multiphoton microscopy," Biomed. Opt. Express 5, 664-674 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science201(4362), 1249–1251 (1978). [CrossRef] [PubMed]
  2. F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res.28(5), 639–657 (1988). [CrossRef] [PubMed]
  3. C. F. Wildsoet and J. D. Pettigrew, “Experimental myopia and anomalous eye growth-patterns unaffected by optic-nerve section in chickens: Evidence for local-control of eye growth,” Clin. Vis. Sci.3, 99–107 (1988).
  4. J. G. Sivak, D. L. Barrie, and J. A. Weerheim, “Bilateral experimental myopia in chicks,” Optom. Vis. Sci.66(12), 854–858 (1989). [CrossRef] [PubMed]
  5. D. Troilo and J. Wallman, “The regulation of eye growth and refractive state: an experimental study of emmetropization,” Vision Res.31(7-8), 1237–1250 (1991). [CrossRef] [PubMed]
  6. Y. F. Shih, M. E. Fitzgerald, T. T. Norton, P. D. Gamlin, W. Hodos, and A. Reiner, “Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia,” Curr. Eye Res.12(3), 219–227 (1993). [CrossRef] [PubMed]
  7. J. Wallman, C. Wildsoet, A. Xu, M. D. Gottlieb, D. L. Nickla, L. Marran, W. Krebs, and A. M. Christensen, “Moving the retina: choroidal modulation of refractive state,” Vision Res.35(1), 37–50 (1995). [CrossRef] [PubMed]
  8. H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res.35(9), 1217–1225 (1995). [CrossRef] [PubMed]
  9. X. Zhu, T. Lin, R. A. Stone, and A. M. Laties, “Sex differences in chick eye growth and experimental myopia,” Exp. Eye Res.61(2), 173–179 (1995). [CrossRef] [PubMed]
  10. J. R. Phillips, M. Khalaj, and N. A. McBrien, “Induced myopia associated with increased scleral creep in chick and tree shrew eyes,” Invest. Ophthalmol. Vis. Sci.41(8), 2028–2034 (2000). [PubMed]
  11. S. Y. Kim, N. Ondhia, D. Vidgen, L. Malaval, M. Ringuette, and V. I. Kalnins, “Spatiotemporal distribution of SPARC/osteonectin in developing and mature chicken retina,” Exp. Eye Res.65(5), 681–689 (1997). [CrossRef] [PubMed]
  12. Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE5(2), e8992 (2010). [CrossRef] [PubMed]
  13. C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res.48(14), 1554–1561 (2008). [CrossRef] [PubMed]
  14. M. L. Kisilak, K. Bunghardt, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “Longitudinal in vivo imaging of cones in the alert chicken,” Optom. Vis. Sci.89(5), 644–651 (2012). [CrossRef] [PubMed]
  15. K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell imaging of the chick retina with adaptive optics,” Curr. Eye Res.36(10), 947–957 (2011). [CrossRef] [PubMed]
  16. J. M. Bueno, A. Giakoumaki, E. J. Gualda, F. Schaeffel, and P. Artal, “Analysis of the chicken retina with an adaptive optics multiphoton microscope,” Biomed. Opt. Express2(6), 1637–1648 (2011). [CrossRef] [PubMed]
  17. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  18. Y. Imanishi, M. L. Batten, D. W. Piston, W. Baehr, and K. Palczewski, “Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye,” J. Cell Biol.164(3), 373–383 (2004). [CrossRef] [PubMed]
  19. Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: Shedding light on the chemistry of vision,” Biochemistry46(34), 9674–9684 (2007). [CrossRef] [PubMed]
  20. B. G. Wang, A. Eitner, J. Lindenau, and K. J. Halbhuber, “High-resolution two-photon excitation microscopy of ocular tissues in porcine eye,” Lasers Surg. Med.40(4), 247–256 (2008). [CrossRef] [PubMed]
  21. J. J. Mancuso, A. M. Larson, T. G. Wensel, and P. Saggau, “Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging,” J. Biomed. Opt.14(3), 034048 (2009). [CrossRef] [PubMed]
  22. R.-W. Lu, Y.-C. Li, T. Ye, C. Strang, K. Keyser, C. A. Curcio, and X.-C. Yao, “Two-photon excited autofluorescence imaging of freshly isolated frog retinas,” Biomed. Opt. Express2(6), 1494–1503 (2011). [CrossRef] [PubMed]
  23. E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized non-linear microscopy of ex vivo human retinas,” J. Biomed. Opt.15(2), 026007 (2010). [CrossRef] [PubMed]
  24. M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).
  25. M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007). [CrossRef] [PubMed]
  26. J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).
  27. J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt.15(6), 066004 (2010). [CrossRef] [PubMed]
  28. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express2(1), 139–148 (2011). [CrossRef] [PubMed]
  29. D. Troilo, M. Xiong, J. C. Crowley, and B. L. Finlay, “Factors controlling the dendritic arborization of retinal ganglion cells,” Vis. Neurosci.13(4), 721–733 (1996). [CrossRef] [PubMed]
  30. F. Schaeffel and H. C. Howland, “Visual optics in normal and ametropic chickens,” Clin. Vis. Sci.3, 83–89 (1988).
  31. J. D. Pettigrew, A. Bhagwandin, M. Haagensen, and P. R. Manger, “Visual acuity and heterogeneities of retinal ganglion cell densities and the tapetum lucidum of the African elephant (Loxodonta africana),” Brain Behav. Evol.75(4), 251–261 (2010). [CrossRef] [PubMed]
  32. F. Schaeffel and H. C. Howland, “Properties of the feedback loops controlling eye growth and refractive state in the chicken,” Vision Res.31(4), 717–734 (1991). [CrossRef] [PubMed]
  33. A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vision Res.42(21), 2409–2417 (2002). [CrossRef] [PubMed]
  34. M. Bartmann and F. Schaeffel, “A simple mechanism for emmetropization without cues from accommodation or colour,” Vision Res.34(7), 873–876 (1994). [CrossRef] [PubMed]
  35. N. S. Hart, T. J. Lisney, and S. P. Collin, “Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity,” J. Exp. Biol.209(23), 4776–4787 (2006). [CrossRef] [PubMed]
  36. Y. Chui, M. Yap, and H. Chan, “The retinal ganglion cell density and nerve fiber layer thickness in the human myopic eye,” Invest. Ophthalmol. Vis. Sci.43, 183 E-Abstract (2002).
  37. H. E. Grossniklaus and W. R. Green, “Pathologic findings in pathologic myopia,” Retina12(2), 127–133 (1992). [CrossRef] [PubMed]
  38. Y. Kitaguchi, K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, and T. Fujikado, “In vivo measurements of cone photoreceptor spacing in myopic eyes from images obtained by an adaptive optics fundus camera,” Jpn. J. Ophthalmol.51(6), 456–461 (2007). [CrossRef] [PubMed]
  39. T. Y. P. Chui, H.-X. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci.49(10), 4679–4687 (2008). [CrossRef] [PubMed]
  40. K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci.51(12), 6858–6867 (2010). [CrossRef] [PubMed]
  41. V. B. Morris, “Symmetry in a receptor mosaic demonstrated in the chick from the frequencies, spacing and arrangement of the types of retinal receptor,” J. Comp. Neurol.140(3), 359–397 (1970). [CrossRef] [PubMed]
  42. J. K. Bowmaker and A. Knowles, “The visual pigments and oil droplets of the chicken retina,” Vision Res.17(7), 755–764 (1977). [CrossRef] [PubMed]
  43. R. Over and D. Moore, “Spatial acuity of the chicken,” Brain Res.211(2), 424–426 (1981). [CrossRef] [PubMed]
  44. H. M. Johnson, “Visual pattern-discrimination in the vertebrate: II. Comparative visual acuity in the dog, the monkey and the chick,” J. Anim. Behav.4(5), 340–361 (1914). [CrossRef]
  45. L. R. DeMello, T. M. Foster, and W. Temple, “Discriminative performance of the domestic hen in a visual acuity task,” J. Exp. Anal. Behav.58(1), 147–157 (1992). [CrossRef] [PubMed]
  46. K. L. Schmid and C. F. Wildsoet, “Assessment of visual acuity and contrast sensitivity in the chick using an optokinetic nystagmus paradigm,” Vision Res.38(17), 2629–2634 (1998). [CrossRef] [PubMed]
  47. E. Diedrich and F. Schaeffel, “Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro,” Vis. Neurosci.26(5-6), 467–476 (2009). [CrossRef] [PubMed]
  48. N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res.46(5), 636–651 (2006). [CrossRef] [PubMed]
  49. T. Y. Chui, M. K. Yap, H. H. Chan, and L. N. Thibos, “Retinal stretching limits peripheral visual acuity in myopia,” Vision Res.45(5), 593–605 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited